Scientists to Develop New Approaches for Identifying Insider Threats Before an Incident Occurs

When a soldier in good mental health becomes homicidal or a government employee abuses access privileges to share classified information, we often wonder why no one saw it coming. When looking through the evidence after the fact, a trail often exists that, had it been noticed, could have possibly provided enough time to intervene and prevent an incident.

With support from the Defense Advanced Research Projects Agency (DARPA) and the Army Research Office, researchers at the Georgia Institute of Technology are collaborating with scientists from four other organizations to develop new approaches for identifying these "insider threats" before an incident occurs. The two-year, $9 million project will create a suite of algorithms that can detect multiple types of insider threats by analyzing massive amounts of data -- including email, text messages and file transfers -- for unusual activity.
 
The project is being led by Science Applications International Corporation (SAIC) and also includes researchers from Oregon State University, the University of Massachusetts and Carnegie Mellon University.
 
"Analysts looking at the electronically recorded activities of employees within government or defense contracting organizations for anomalous behaviors may now have the bandwidth to investigate five anomalies per day out of thousands of possibilities. Our goal is to develop a system that will provide analysts for the first time a very short, ranked list of unexplained events that should be further investigated," said project co-principal investigator David A. Bader, a professor with a joint appointment in the Georgia Tech School of Computational Science and Engineering and the Georgia Tech Research Institute (GTRI).
 
Under the contract, the researchers will leverage a combination of massively scalable graph-processing algorithms, advanced statistical anomaly detection methods and knowledge-based relational machine learning algorithms to create a prototype Anomaly Detection at Multiple Scales (ADAMS) system. The system could revolutionize the capabilities of counter-intelligence community operators to identify and prioritize potential malicious insider threats against a background of everyday cyber network activity.
 
The research team will have access to massive data sets collected from operational environments where individuals have explicitly agreed to be monitored. The information will include electronically recorded activities, such as computer logins, emails, instant messages and file transfers. The ADAMS system will be capable of pulling these terabytes of data together and using novel algorithms to quickly analyze the information to discover anomalies.
 
"We need to bring together high-performance computing, algorithms and systems on an unprecedented scale because we're collecting a massive amount of information in real time for a long period of time," explained Bader. "We are further challenged because we are capturing the information at different rates -- keystroke information is collected at very rapid rates and other information, such as file transfers, is collected at slower rates."
 
In addition to Bader, other Georgia Tech researchers supporting key components of this program include School of Interactive Computing professor Irfan Essa, School of Computational Science and Engineering associate professor Edmond Chow, GTRI principal research engineers Lora Weiss and Fred Wright, GTRI senior research scientist Richard Boyd, and GTRI research scientists Joshua L. Davis and Erica Briscoe.
 
"We look forward to working with DARPA and our academic partners to develop a prototype ADAMS system that can detect anomalies in massive data sets that can translate to significant, often critical, actionable insider threat information across a wide variety of application domains," said John Fratamico, SAIC senior vice president and business unit general manager.

 

Featured

  • Cloud Adoption Gives Way to Hybrid Deployments

    Cloud adoption is growing at an astonishing rate, with Gartner forecasting that worldwide public cloud end-user spending will approach $600 billion by the end of this year—an increase of more than 21% over 2022. McKinsey believes that number could eclipse $1 trillion by the end of the decade, further underscoring the industry’s exponential growth. Read Now

  • AI on the Edge

    Discussions about the merits (or misgivings) around AI (artificial intelligence) are everywhere. In fact, you’d be hard-pressed to find an article or product literature without mention of it in our industry. If you’re not using AI by now in some capacity, congratulations may be in order since most people are using it in some form daily even without realizing it. Read Now

  • Securing the Future

    In an increasingly turbulent world, chief security officers (CSOs) are facing a multitude of challenges that threaten the stability of businesses worldwide. Read Now

    • Guard Services
  • Security Entrances Move to Center Stage

    Most organizations want to show a friendly face to the public. In today’s world, however, the need to keep people safe and secure has become a prime directive when designing and building facilities of all kinds. Fortunately, there is no need to construct a fortress-like entry that provides that high level of security. Today’s secured entry solutions make it possible to create a welcoming, attractive look and feel at the entry without compromising security. It is for this reason that security entrances have moved to the mainstream. Read Now

Featured Cybersecurity

Webinars

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening. 3

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings. 3

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3