Upgrading To A New Era

Keeping the ever-increasing demand for anytime, anywhere data under control

The recent eruption of mobile applications coupled with increasing IP-based data traffic on mobile devices is fueling the uptake of 4G technologies and driving the migration to faster data rates. In order to allow an all-IP-based services platform, service providers are upgrading existing networks and migration strategies. Both handset vendors and carriers are busy rolling out application portals in order to differentiate their offerings and provide better monetization and ARPU. The increasing trend for “anywhere, anytime” data technology is pushed by user mobility and subscriber need.

The move to mobile connectivity and mobile broadband, and more overall data traffic, is powering this expansion. Subscribers are dictating what applications they want to use and where they want to use them. This is pushing operators to move to an all-IP core by reducing network complexity and lowering costs.

With this much network transformation, the migration won’t happen overnight. Network operators still need to support a hybrid network for the foreseeable future, interconnecting next-generation systems and devices with the various types of existing platforms. The future of the network is becoming more complex, and the journey toward a converged all-IP network brings a whole new set of network performance and management guidelines to be implemented by IT organizations. Real-time network troubleshooting, monitoring and provisioning must be implemented strategically, as they are driven by the ever-important need to maintain and manage the subscriber experience.

Real-time monitoring of network traffic has proven to be particularly important for analyzing and diagnosing network performance and, consequently, the subscriber’s quality of experience (QoE).

Legacy Tools Fall Short of Real-Time Monitoring Needs

Performance and complexity problems are only made worse by fragmented monitoring approaches. The constant push for more efficient connectivity is leaving traditional approaches toward network monitoring incapable of managing network components on service provider and enterprise infrastructures. The accumulation of outdated network monitoring components coupled with the growing complexity of data on the network is causing several major problems.

Traditionally, placing a host of tools into the network was the solution to improving visibility of network performance. While this strategy does solve some problems, it introduces others. The inability to access a particular point in a network with multiple tools is often considered the biggest challenge IT managers face. This limitation, combined with the type of overhead management used in legacy monitoring schemes, creates a network “blind spot” and makes troubleshooting inefficient because there often are different sets of tools scattered across the network in different physical locations, each with individual management software that is inoperable with the software of other vendors.

Monitoring costs become increasingly expensive as network management becomes more inefficient and network engineers have limited accessibility to certain points in the network yet still have to manage an immense overflow of data. Reduced ROI and increased costs from the lack of fast and efficient troubleshooting is impacting revenues across the board—and adding performance and complexity problems.

Smarter Solutions: The Economics of Network Intelligence Optimization

Network operators—especially those in the telecom, enterprise or government industries—must carefully consider the price-performance, agility, diversity and intelligent capabilities of a traffic capture solution before making a decision. They must develop a complete and forward-looking strategy for network monitoring and management. There are a rising number of macro trends that, depending on future requirements, network operators should be mindful of when determining their network monitoring needs; technology development, “flattening the network” and purchasing economics are examples.

The continued expansion of IP only looks to accelerate the need to displace legacy systems with a next-generation network. With the network “flattening,” more distributed IP components in the network will be created, thus effectively generating more potential points of failure. A broader range of IP services will be rolled out as a result, further increasing the complexity of the network. Added complexity creates more opportunities for points of monitoring; the monitoring infrastructure should be “flat” and flexible across the whole network.

The Network Intelligence Optimization framework is laying the foundation for a smarter network monitoring solution. In order to withstand the increase in speed and complexities, the traffic-capture layer must continue to be utilized in the hardware because it is necessary to have a deeper awareness of packets and applications, along with a more dynamic handling of them.

With the need to improve service delivery while having tighter budget control, it is no surprise that network managers must now do more with less. However, the network monitoring optimization framework enables an organization to shift from a high initial CAPEX business model to a lower and variable CAPEX model when looking at the network monitoring component of the budget.

Network managers can do more in other areas such as network forensics, lawful intercepts and behavioral analysis now that there is less to worry about. With managed service providers (MSPs) having become mainstream, and primarily focused on monetization of QoS/QoE rather than on monitoring network elements and packets, the layered approach to network monitoring is essential to enabling the business model and differentiation in such network environments.

This article originally appeared in the March 2012 issue of Security Today.

Featured

  • Maximizing Your Security Budget This Year

    Perimeter Security Standards for Multi-Site Businesses

    When you run or own a business that has multiple locations, it is important to set clear perimeter security standards. By doing this, it allows you to assess and mitigate any potential threats or risks at each site or location efficiently and effectively. Read Now

  • New Research Shows a Continuing Increase in Ransomware Victims

    GuidePoint Security recently announced the release of GuidePoint Research and Intelligence Team’s (GRIT) Q1 2024 Ransomware Report. In addition to revealing a nearly 20% year-over-year increase in the number of ransomware victims, the GRIT Q1 2024 Ransomware Report observes major shifts in the behavioral patterns of ransomware groups following law enforcement activity – including the continued targeting of previously “off-limits” organizations and industries, such as emergency hospitals. Read Now

  • OpenAI's GPT-4 Is Capable of Autonomously Exploiting Zero-Day Vulnerabilities

    According to a new study from four computer scientists at the University of Illinois Urbana-Champaign, OpenAI’s paid chatbot, GPT-4, is capable of autonomously exploiting zero-day vulnerabilities without any human assistance. Read Now

  • Getting in Someone’s Face

    There was a time, not so long ago, when the tradeshow industry must have thought COVID-19 might wipe out face-to-face meetings. It sure seemed that way about three years ago. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

Webinars

New Products

  • Hanwha QNO-7012R

    Hanwha QNO-7012R

    The Q Series cameras are equipped with an Open Platform chipset for easy and seamless integration with third-party systems and solutions, and analog video output (CVBS) support for easy camera positioning during installation. A suite of on-board intelligent video analytics covers tampering, directional/virtual line detection, defocus detection, enter/exit, and motion detection. 3

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.” 3

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3