Supporting PIV I Cards

How to determine if your physical access control system supports the solution

When your physical access control system (PACS) manufacturer tells you its system supports PIV-I “end-to-end,” you might want to do some additional digging to make sure you both agree as to what that really means. Legacy PACS designed for proximity cards (or even PIV cards) are unlikely to support PIV-I cards without specific upgrades for handling 128-bit identifiers. Just because a PACS supports PIV cards doesn’t mean it supports PIV-I cards. In a plug-and-play world, it may be your job to ensure that each component is capable of PIV-I.

PIV Card Identifiers

The identifier on a PIV card is the 32-digit Federal Agency Smart Credential Number (or FASC-N). The FASC-N, found in the card’s CHUID container, is a “smart number” consisting of nine fields.

The first five FASC-N fields—16 binary coded digits—are sufficient to uniquely identify every federally issued credential. That means that physical access control systems may safely use the first 16 digits of the FASC-N as the card identifier without concern for duplicates. The largest possible 16-digit identifier would therefore be 9,999,999,999,999,999, which happens to require 54 bits. Most access control panels cannot store a value as large as this as a single number. Instead, they employ schemes that split the value into two or three logical parts. A common method is to concatenate the agency code, system code and credential number (14 digits), forming one number, and the credential series code and individual credential issue (2 digits), forming another number. Another method is to combine the agency code and system code into a number represented as the traditional “facility code” and store the credential number as the traditional “card number.”

This is often done to avoid updating panel firmware and head-end software to support larger identifiers.

PIV-I Card Identifiers

PIV-I cards are intended for non-federal issuers. The number of organizations that could potentially deploy it is so large that the agency code-system code-credential number method used by PIV cards would not work. Therefore, with PIV-I, the FASC-N can no longer be used as the card identifier. In fact, the first 14 digits of the FASC-N on a PIV-I card are all 9s.

Therefore, if a system can read only a partial FASC-N, all PIV-I cards would appear the same.

PIV-I credentials must use a different numbering system called the globally unique identifier (GUID), which also is found in the CHUID container. The construction of the GUID has some important properties that impact physical access control systems. A GUID is generated in a way that ensures uniqueness across the planet, even if the machine generating it is “off the grid.” The GUID is always 128 bits, which is more than double the size of the 16-digit truncated FASC-N.

The Reader

The reader must be able to recognize that the credential is a PIV-I card. The correct way for the reader to do this is to read the CHUID and check the first 14 digits of the FASC-N. If it is not all 9s, it then outputs the FASC-N. If it is all 9s, it outputs the GUID. The panel must be able to accept cards of both formats—FASC-N or GUID.

The Panel

PIV-I credentials require the control panel and the head end to store larger values for identifiers. These values can still be broken into smaller pieces for ease of storage, but because the GUID is a series of 128 bits rather than a string of binary coded digits, the panel must employ a different method for splitting a GUID received from a reader.

Splitting must be done by bits, not digits. When a PIV-I GUID arrives on the reader port, the panel must split the GUID and compare it with pieces of GUIDs previously received from the head end.

The Head End

Because head-end computers usually have larger memory capacities and more sophisticated database engines, the PIV-I GUID can often be stored as a single 128-bit value. In fact, Microsoft SQL Server supports the GUID as a data type. Regardless, head-end software must be able to accept a GUID as card identifier from the enroller and must be able to send the complete GUID to the panel. The panel must be capable of storing the GUID in a way that it can quickly be compared with the GUID arriving on a reader port.

Remember, there are many things to keep in mind when determining if your PACS supports PIV-I “end-to-end” and whether your access control system truly has the capability to support PIV-I cards.

This article originally appeared in the June 2012 issue of Security Today.

Featured

  • 12 Commercial Crime Sites to Do Your Research

    12 Commercial Crime Sites to Do Your Research

    Understanding crime statistics in your industry and area is crucial for making important decisions about your security budget. With so much information out there, how can you know which statistics to trust? Read Now

  • Boosting Safety and Efficiency

    Boosting Safety and Efficiency

    In alignment with the state of Mississippi’s mission of “Empowering Mississippi citizens to stay connected and engaged with their government,” Salient's CompleteView VMS is being installed throughout more than 150 state boards, commissions and agencies in order to ensure safety for thousands of constituents who access state services daily. Read Now

  • Live From GSX: Post-Show Review

    Live From GSX: Post-Show Review

    This year’s Live From GSX program was a rousing success! Again, we’d like to thank our partners, and IPVideo, for working with us and letting us broadcast their solutions to the industry. You can follow our Live From GSX 2023 page to keep up with post-show developments and announcements. And if you’re interested in working with us in 2024, please don’t hesitate to ask about our Live From programs for ISC West in March or next year’s GSX. Read Now

    • Industry Events
    • GSX
  • People Say the Funniest Things

    People Say the Funniest Things

    By all accounts, GSX version 2023 was completely successful. Apparently, there were plenty of mix-ups with the airlines and getting aircraft from the East Coast into Big D. I am all ears when I am in a gathering of people. You never know when a nugget of information might flip out. Read Now

    • Industry Events
    • GSX

Featured Cybersecurity

Webinars

New Products

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge. 3

  • XS4 Original+

    XS4 Original+

    The SALTO XS4 Original+ design is based on the same proven housing and mechanical mechanisms of the XS4 Original. The XS4 Original+, however, is embedded with SALTO’s BLUEnet real-time functionality and SVN-Flex capability that enables SALTO stand-alone smart XS4 Original+ locks to update user credentials directly at the door. Compatible with the array of SALTO platform solutions including SALTO Space data-on-card, SALTO KS Keys as a Service cloud-based access solution, and SALTO’s JustIn Mobile technology for digital keys. The XS4 Original+ also includes RFID Mifare DESFire, Bluetooth LE and NFC technology functionality. 3

  • ComNet CNGE6FX2TX4PoE

    The ComNet cost-efficient CNGE6FX2TX4PoE is a six-port switch that offers four Gbps TX ports that support the IEEE802.3at standard and provide up to 30 watts of PoE to PDs. It also has a dedicated FX/TX combination port as well as a single FX SFP to act as an additional port or an uplink port, giving the user additional options in managing network traffic. The CNGE6FX2TX4PoE is designed for use in unconditioned environments and typically used in perimeter surveillance. 3