Safety On The Railway

Fiber-optic surveillance network provides safety, security on Russian lines

How does one of the largest railway companies in the world protect its passengers from terrorist attacks and sabotage? The Russian Railways deployed an ambitious surveillance project to safeguard the nearly 1 billion passengers who ride the rail system each year. The goal was to deploy surveillance cameras that can spot terrorists along 53,000 miles of track 24 hours a day and through the snow of the infamous Russian winters.

The Russian Railways employs 950,000 people and is a monopoly of the Russian Federation headquartered in Moscow. The company operates commuter rail and regional rail services throughout the country, using mostly electric trains known as “elektrichka.” The Russian Railways operates the second-largest rail network in the world exceeded only by the United States. More than 4,000 commuter trains a day are running on the rail network, with more than a thousand in the Moscow metropolitan area.

The railway is using a variety of systems integrators and installers that work under the umbrella of the government-owned national rail carrier to deploy anti-terrorist surveillance systems, which are being deployed in different regions using integrators throughout the country.

There were three key challenges in this project.

The first was to install cameras at remote locations along the many miles of track. The second was to provide surveillance images day and night, and through snow and rain. The third was to deploy equipment that could withstand extremely cold weather.

The distance challenge was complicated by the fact that many of the cameras deployed used Power over Ethernet. PoE is a useful technology in powering remote cameras, but as with any copper network cable, the challenge lies in the limited distance and bandwidth of copper unshielded twisted-pair cabling. The maximum length for a standard copper UTP Ethernet cable segment is 100 meters (328 feet), and PoE power sourcing equipment—like midspan power injectors—does not increase the distance of the data network.

There are several solutions available to extend the distances of PoE network links, including fiber-optic cabling, LAN extenders that convert Ethernet to DSL over UTP copper cable, UTP to coax converters and wireless. Fiber was chosen because it provides several distinct advantages over these technologies and can extend network distances up to 87 miles. LAN extenders reach up to 3,000 feet, and UTP to coax converters up to 1,200 feet. Fiber is the most reliable because it is not susceptible to electrical interference— an issue with electric commuter trains—temperature or atmospheric conditions like snow and rain. Fiber supports the highest data rates—1 gigabit or more with multiplexing—and has intrinsic security advantages because it is difficult to tap and has no electromagnetic emission.

But fiber cannot transmit the electrical current required for PoE and PoE+ powered cameras. Omnitron’s OmniConverter PoE media converters were selected to convert fiber cabling to copper UTP and inject PoE on the RJ-45 port. The OmniConverter PoE media converters can provide power to one or two cameras using standard UTP cables that carry the Ethernet data and function like a PoE mini-switch. Several OmniConverter port configurations are available, including one or two RJ-45 and fiber ports.

OmniConverters also are available in two power levels. They can provide up to 15.4 watts of power per UTP port for IEEE 802.3af PoE or up to 25.5 watts per port for IEEE 802.3at PoE+ for powerhungry cameras with PTZ and built-in heaters and blowers.

A typical Russian Railways surveillance system incorporates fiber cabling deployed in a star topology, where several fiber cable runs are distributed from a switch with fiber-optic ports. The switches are connected via gigabit fiber links to an aggregation switch at a regional command center. The fiber that connects the cameras terminates at a custom-built enclosure that houses two cameras and an OmniConverter. Each camera is powered from an RJ-45 port on the media converter, and OmniConverter is powered by a local AC power source. This was the configuration used along the Oktaybr’syaya Railway from St. Petersburg to Moscow.

The challenge of providing surveillance images day and night and when weather limits visibility was overcome by installing a video camera and a thermal imaging camera in each enclosure. Video cameras provide surveillance in daylight, and the thermal cameras provide surveillance at night and in snow and rain. A variety of camera brands and models were used in the project, including several from Russian manufactures. All cameras were IPbased and transmitted video signals over the Ethernet network. A multi-port PoE media converter was installed in the enclosure to convert the fiber to two copper UTP cables that provide data connectivity and PoE to both of the cameras.

The extreme cold challenge was overcome by using temperature- hardened cameras and PoE media converters. The cameras and the PoE media converters selected for the project are hardened to operate within a -40 degrees C to +75 degrees C (-40 degrees F to 167 degrees F) temperature range.

In deployments inside terminals and stations, a single video camera is all that was needed. Distances still required running fiber to the camera, so a PoE media converter with one PoE RJ- 45 port is used. In other deployments, cameras that are directly AC powered are deployed with fiber connectivity. These cameras didn’t require PoE, but required copper-to-fiber conversion because they did not have integrated fiber ports. In these applications, Omnitron’s miniature miConverter media converters— about half the size of a deck of cards—were used to provide copper to fiber connectivity in a compact enclosure.

For all the Russian Railways deployments, using an Ethernet network with fiber cabling, IP cameras and media converters provided flexible solutions for surveillance at long distances in a variety of weather conditions.

This article originally appeared in the June 2012 issue of Security Today.

Featured

  • The Next Generation

    Video security technology has reached an inflection point. With advancements in cloud infrastructure and internet bandwidth, hybrid cloud solutions can now deliver new capabilities and business opportunities for security professionals and their customers. Read Now

  • Help Your Customer Protect Themselves

    In the world of IT, insider threats are on a steep upward trajectory. The cost of these threats - including negligent and malicious employees that may steal authorized users’ credentials, rose from $8.3 million in 2018 to $16.2 million in 2023. Insider threats towards physical infrastructures often bleed into the realm of cybersecurity; for instance, consider an unauthorized user breaching a physical data center and plugging in a laptop to download and steal sensitive digital information. Read Now

  • Enhanced Situation Awareness

    Did someone break into the building? Maybe it is just an employee pulling an all-nighter. Or is it an actual perpetrator? Audio analytics, available in many AI-enabled cameras, can add context to what operators see on the screen, helping them validate assumptions. If a glass-break detection alert is received moments before seeing a person on camera, the added situational awareness makes the event more actionable. Read Now

  • Transformative Advances

    Over the past decade, machine learning has enabled transformative advances in physical security technology. We have seen some amazing progress in using machine learning algorithms to train computers to assess and improve computational processes. Although such tools are helpful for security and operations, machines are still far from being capable of thinking or acting like humans. They do, however, offer unique opportunities for teams to enhance security and productivity. Read Now

Featured Cybersecurity

New Products

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge. 3

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening. 3