Building Ultra-Low Power Wireless Networks

Engineering researchers at the University of Arkansas have received funding from the National Science Foundation to create distortion-tolerant communications for wireless networks that use very little power. The research will improve wireless sensors deployed in remote areas where these systems must rely on batteries or energy-harvesting devices for power.

“Ultra-low power consumption is one of the most formidable challenges faced by the next generation of wireless sensing systems,” said Jingxian Wu, assistant professor of electrical engineering. “These systems will need to operate without interruption for multiple years and with extremely limited battery capacity or limited ability to scavenge energy from other devices. This is why the NSF was interested in our research.”

Ultra-low power wireless communication devices are powered by batteries or energy harvesting devices such as solar panels. The lower the power consumption, the longer the device can operate without recharging. This is especially important for wireless sensor networks, where the sensors are often deployed in remote areas to monitor items such as water quality, the health of animals and the condition of tunnels, buildings and bridges. These networks are expected to operate without interruption over extremely long periods of time without changing batteries. Therefore, it is important to reduce the power consumption so the device can operate for long periods without human intervention.

During data transfer, distortion occurs if the received message is different from the transmitted message. In digital communication systems, the data are transmitted in the form of zeroes and ones. Due to noise and interference during the transmission process, the receiver might receive a zero when a one was transmitted or vice versa. Some critical data or software, such as computer games, requires distortion-free communication. With these systems, any distortion might make the software nonoperational. Other data, such as pictures, music and videos, can tolerate some distortion because human perception might not be sensitive to some of the features.

Conventional research on wireless communication technologies focuses on minimizing distortion through various methods and designs. Conversely, Wu and doctoral student Ning Sun work with distortion-tolerant systems. Rather than limiting or minimizing distortion, their wireless systems allow for controlled distortion, which requires less power than conventional technologies.

“If we accept the fact that distortion is inevitable in practical communication systems, why not directly design a system that is naturally tolerant to distortion?” Wu said. “Allowing distortion instead of minimizing it, our proposed distortion-tolerant communication can operate in rate levels beyond the constraints imposed by Shannon channel capacity.”

Shannon channel capacity is the maximum rate at which distortion-free information can be transmitted over a communication channel.

The goal of Wu’s research project generally is to advance the knowledge of ultra-low power wireless networks. He and his colleagues will construct and test theories, design tools to enable distortion-tolerant technologies and design and develop prototype networks. Their theories exploit the unique features of wireless monitoring systems, such as delay-tolerance, distortion-tolerance, low data rate and spatial data correlation, all of which provide more freedom in network design.

The researchers’ work will accelerate the widespread deployment of ultra-low power wireless networks used for surveillance, environmental and structure monitoring, and biomedical sensing. These applications have the ability to provide early warnings to prevent catastrophic events, such as structural failures, to improve public safety and homeland security and to promote the health and well being of the general public.

The National Science Foundation grant totals $279,425 over three years.

Wu and Sun recently published findings on distortion-tolerant wireless networks in IEEE Transactions on Wireless Communications.

Featured

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

New Products

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.