Remote Monitoring of Critical Infrastructure

Quicker response times to disasters lead to less crisis situations

Remote monitoring of critical infrastructure used to be very difficult, but thanks to available technologies, this task can be achieved with a fraction of the resources required in the past.

Almost everyone has experienced a time when a major storm or other natural disaster significantly altered his or her life. Most of the time, these interruptions are temporary and only last a few minutes or a couple of hours, but there are times when lives are disrupted for days, weeks and even months. While these disasters cannot be eliminated, our ability to prepare for and respond to them can be greatly enhanced through remote monitoring of critical infrastructure.

Understanding Customer Needs and the Problem

Understanding the needs of the customer and the complexity of the problem are the first issues that need to be addressed, as they are critical to getting to the root causes of the problem(s). This exploration also helps the integrator fully communicate the various technologies that can be offered to the customer.

For example, in the case of a hydroelectric dam, a power company needed to figure out a way to see what was going on without physically having someone onsite, monitoring the situation 24 hours a day. Thus, the solution needed to work in complete darkness and in a wide variety of weather conditions, not just rain or shine but also in snow and ice. Taking into account various seasonal differences in a remote location is very important and can account for the success, or failure, of solving a customer’s issues.

Using a combination of surveillance cameras with wireless communications ultimately enabled this power company to remotely monitor the hydroelectric dam, enabling any change(s) in the structural integrity of the dam, the reservoir water level or the arrival of any intruders to be detected and appropriate actions taken.

When involved in a project that is in a remote area, it’s important to focus on all of the details and doing it right; in other words, “failure is not an option.”

The Solution and Installation

A number of possibilities were presented, but the power company and integrator decided it would be best to install a number of networked, IP-based surveillance cameras, with some being thermal, along with a combination of wireless communications to offer redundant paths that would ensure communications with the system would always operate. And because the location did not have power available, solar and wind power was used.

After initial site surveys were conducted, the list and placement of the camera systems were determined for the dam, taking into account future tree growth, sun position at various times of the year and allowances for significant snow accumulation. It was also anticipated that moon illumination would not be available at all times, making the thermal imaging cameras key.

Using multiple technology partners was important in ensuring the installation plan was covering all issues. Once the vision and plan was developed, the system came together and was thoroughly tested over a period of time, prior to final installation at the remote site.

Achievements

Using IP camera systems enabled the power company to monitor the system anytime and anywhere by simply logging into the system. To ensure successful communications, remote industrial cellular and 2-way satellite was used. If cellular communications failed, the system would automatically switch to satellite communications, and redundant uplinks from more than one location at the remote site ensured that communication would not be an issue.

While a no-fault tolerant system is perfect, using multiple layer redundancy can greatly reduce any interruption in system operation.

Once the system was completely installed and operating, multiple tests were conducted over the course of a few months to ensure functionality. Additionally, a maintenance plan was determined to make sure the system would remain operable for multiple years.

Analyzing the Installation

This hydroelectric dam monitoring system had many components that worked well and some that didn’t. It is always in the details, and it seems like it is the simple things that can be the resulting cause of major issues. For example, we learned that you can almost never have enough batteries or solar coverage to satisfy your “expected” power consumption.

In the midst of a large project like this, it is easy to lose touch with problems that need solutions, so communication with the customer is critical. There are always ways to improve your process; we consistently hope that we never make the same mistake twice.

The United States has some of the best infrastructure systems in the world, but many things in our culture have been taken for granted over the course of time. If we want to minimize the impact of natural disasters and protect our infrastructure from terrorism, remote infrastructure monitoring systems are excellent ways. Remote infrastructure monitoring allows us to make better choices in reacting to situations, which adds to our quality of life and helps ensure our society’s safety and security. After all, the quicker the response, the less severe the impact.

This article originally appeared in the October 2013 issue of Security Today.

Featured

  • Cloud Security Alliance Brings AI-Assisted Auditing to Cloud Computing

    The Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment, today introduced an innovative addition to its suite of Security, Trust, Assurance and Risk (STAR) Registry assessments with the launch of Valid-AI-ted, an AI-powered, automated validation system. The new tool provides an automated quality check of assurance information of STAR Level 1 self-assessments using state-of-the-art LLM technology. Read Now

  • Report: Nearly 1 in 5 Healthcare Leaders Say Cyberattacks Have Impacted Patient Care

    Omega Systems, a provider of managed IT and security services, today released new research that reveals the growing impact of cybersecurity challenges on leading healthcare organizations and patient safety. According to the 2025 Healthcare IT Landscape Report, 19% of healthcare leaders say a cyberattack has already disrupted patient care, and more than half (52%) believe a fatal cyber-related incident is inevitable within the next five years. Read Now

  • AI Is Now the Leading Cybersecurity Concern for Security, IT Leaders

    Arctic Wolf recently published findings from its State of Cybersecurity: 2025 Trends Report, offering insights from a global survey of more than 1,200 senior IT and cybersecurity decision-makers across 15 countries. Conducted by Sapio Research, the report captures the realities, risks, and readiness strategies shaping the modern security landscape. Read Now

  • Analysis of AI Tools Shows 85 Percent Have Been Breached

    AI tools are becoming essential to modern work, but their fast, unmonitored adoption is creating a new kind of security risk. Recent surveys reveal a clear trend – employees are rapidly adopting consumer-facing AI tools without employer approval, IT oversight, or any clear security policies. According to Cybernews Business Digital Index, nearly 90% of analyzed AI tools have been exposed to data breaches, putting businesses at severe risk. Read Now

  • Software Vulnerabilities Surged 61 Percent in 2024, According to New Report

    Action1, a provider of autonomous endpoint management (AEM) solutions, today released its 2025 Software Vulnerability Ratings Report, revealing a 61% year-over-year surge in discovered software vulnerabilities and a 96% spike in exploited vulnerabilities throughout 2024, amid an increasingly aggressive threat landscape. Read Now

New Products

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises.