wifi router office

IoT Security: Current Threats and How to Overcome Them

Connecting devices to a 0G network is a simple fix to seemingly insurmountable challenges.

The Internet of Things (IoT) industry is booming, offering data-backed insights that are providing value to numerous enterprises and industries. In agriculture, for instance, IoT devices are helping farmers monitor weather changes in the precise location of their crops to optimize labor, water usage and harvest health. In the supply chain, the IoT is being used to track the location and conditions of shipments, ensuring that transported goods make it to their destination safely and on time. In the travel industry, IoT sensors are notifying flight passengers when their bags arrive at the airport.

The opportunities afforded by the IoT are clear and seemingly limitless, but one major obstacle still hinders widespread adoption: uncertainties around device and network security. In a survey conducted by Bain & Company in 2018, enterprise and industrial respondents listed security as the top barrier to IoT adoption. To overcome this challenge, organizations must first understand the different types of security vulnerabilities, and how to combat them.

Current Threats to the IoT

IoT device security issues currently stem from three sources:

  1. Network hacks: Network hacks occur when devices are compromised via the network to which they are connected. This type of breach enables the hacker to gain control of the device and operate it as they like. For example, the hacker might tap into a device in an autonomous vehicle to control its driving and trigger a crash, or a thermostat to control temperature of an industrial furnace and cause harm to a factory.
  2. Distributed Denial of Service (DDoS) attacks: DDoS attacks happen when devices are manipulated to send so many messages that the IoT network becomes overwhelmed and shuts down. Hackers use this method to take control of multiple compromised devices to create a “traffic jam,” preventing necessary information from getting through to its destination.
  3. Radio frequency (RF) jamming: Wireless IoT devices, such as alarm security devices, may be blocked via radio jamming, which is the deliberate jamming, blocking or interference with wireless communications. This process is done by purchasing an illegal RF jammer device, and can cause IoT devices to lose connectivity, limiting their ability to communicate with the network. For example, home and commercial alarm security systems, which are usually connected over cellular networks, can be jammed to enable a break-in and block the alarm that would typically be sent to the security provider.

Solving security problems can often seem like an insurmountable hurdle to overcome. But, when IoT devices are connected to a reliable network, avoiding network hacks and DDoS attacks becomes fairly simple.

Combating Network Hacks and DDoS Attacks with 0G

Organizations can avoid DDoS attacks and network hacks by connecting IoT devices to a 0G network. A 0G network is a dedicated, low-power wireless network that is specifically designed to send small, critical messages from any IoT device to the Internet. Because the network is created to save power, it does not rely on traditional, constant and synchronized two-way communication protocol between the device and the receiver. Once the IoT device wakes up and sends the data asynchronously to the 0G network, it goes back into sleep-mode. This creates an extremely small window for hackers to break into the network and take control of the device. As a result, devices connected to a 0G network are not beholden to it and therefore not susceptible to network hacks.

0G can also mitigate the risk of DDoS attacks because this kind of network does not support network-initiated downlinks—0G networks only support device-initiated downlinks. As a result, devices cannot be taken over and controlled remotely to launch DDoS attacks.

Due to the robustness of the 0G signaling scheme and pseudo-randomness of its data transmissions, a 0G network is also nearly impossible to jam. It would be exceptionally expensive, while also requiring extremely high-power antennas to jam an ultra-narrowband 0G network. In fact, a 0G network can actually serve as a backup network for cellular devices susceptible to RF jamming.

With a 0G network, enterprise and industry organizations can unlock the limitless potential of IoT without compromising security. Overcoming these security challenges are the next step in shifting the future of IoT forward.

Featured

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

New Products

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.