Reshaping the Perimeter

Developing the basics of deter, detect, delay and deny

Driven by the 2013 physical assault on a California substation, the NERC CIP 14 regulation has reshaped the way energy’s physical security directors are viewing perimeter security. The NERC requirements for protecting the Bulk Electric System (BES) have dealt the sector a deadline with a litany of possible answers for assets but, no one solution set fits all the needs. As a result, security directors are now tasked with reviewing a multitude of security options to enhance a site’s physical perimeter in order to find solutions that not only fit the NERC CIP 14 guidelines, but also fall within their budget requirements.

The Learning Curve

The ever-evolving landscape of security needs puts the electrical energy sector in a steep learning curve on how to establish an effective, robust and holistic security program with a realistic budget that is palatable throughout the organization to the C-Suite level. On the bright side for the security executive, there are companies, like ours, that have the ability to help coordinate those needs and provide that holistic approach. They can take an unsecured site from initial security assessment through completion.

Developing a program that addresses the basics of deter, detect, delay and deny has many more options than it did in the past, as security on the perimeter has made marked improvements in technology over the years, including camera analytics, radar and fence-mounted intrusion detection systems. These systems are designed to give advanced warning of an intruder breaching the perimeter. As these technologies continue to get more efficient, fencing manufactures are also bringing new, more delay-driven products to the marketplace. The layering of these products by companies taking a holistic approach will help the decision process on what systems to use and where to deploy them based on the design basis threat (DBT) and assessed adversary task time.

The new broader view of perimeter security has also led to ASTM standards playing a larger role in making decisions on the development of the overall security strategy/posture. The energy sector is largely acquainted with organizations like NIST & ANSI but the ASTM Standards have been somewhat overlooked from the physical side of the vertical. ASTM is an internationally recognized publisher of standards made up of consumers, manufacturers, academics and consultants. ASTM has more than 12,800 published standards and is recognized and accepted by many federal, state and municipal organizations globally as well as the electrical sector.

One of the key standards being recognized, but somewhat underused in the energy industry, is the ASTM F2718-18 Standard Practice for Testing Forced Entry, Ballistic and Low Impact Resistance of Security Fence Systems. This is a unique standard that encapsulates three aspects of physical security. These aspects include testing the ability of two assailants to breach a perimeter with three levels of tool sets ranging from low to aggressive. Examples of the applicable tools are a hacksaw for low, a 20-inch bolt cutter for medium and an oxyacetylene torch for aggressive.

The ballistic specification lays out the testing of three different types of ammunition that include the .38 special handgun (158 Grain-Lead Round Nose), .308 (147 Grain-Full Metal Casing) and 7.62 (U.S. Mil Spec-Steel Jacketed). The pass/fail criteria for the ballistic test is in accordance with the MIL-STD 662F (military ballistic test for armor) and NIJ Standard 0108.01. The low impact resistance of security fence systems is a low-speed test performed at 20 mph by a 4,000-pound bogie vehicle with a 6-inch by 42-inch bumper that is 24 inches off the ground.

Another of the ASTM Specifications being more widely used is the ASTM F2656-18 Standard Test Method for Crash Testing of Vehicle Security Barriers. This standard was taken over from the State Department in 2007 by the U.S. Army Corp of Engineers due to manufacturers’ rush to market after the 9/11 attacks.

Prior to 2007 (1985-2007), the DOS’ Bureau of Diplomatic Security handled the testing and certification of the vehicle security barriers. The results of those tests had what you will still see today as K-Ratings with L-Penetrations. DOS only tested 15,000-pound vehicles so you only had one designation that was tested. The tested and certified rating were as follows: K4 (15,000-pound vehicle traveling 30 mph), K8 (15,000-pound vehicle traveling 40 mph), K12 (15,000-pound vehicle traveling 50 mph). The penetration ratings for these ratings are L3 (0- 3.3 feet), L2 (3.3 feet to 20 feet), L1 (20.1 feet to 50 feet). You still see these ratings today specified in projects but are not the most current.

After 2001, the demand for crash-tested barriers rose dramatically and manufactures began to test and request certification at a rate never seen before, hence the move to the USACE for the new ASTM certification. ASTM F2656-18 encompasses a range of vehicles from something as small as a passenger car weighing 2,430-pounds traveling at tested speeds of 30 mph, 40 mph and 50 mph up to a 65,000-pound vehicle traveling 30 mph, 40 mph and 50 mph. Also included in the result of the test is a penetration rating. These ratings are taken from different points of reference on the differing vehicles and barriers tested and are thoroughly outlined in the specification. The penetration ratings are P1 (0-3.3 feet or 1 meter), P2 (3.31 feet to 23feet, or 1.01 meter to 7 meters), P3 (23.1 feet to 98.4 feet, or 7.01 meters to 30 meters). The full list of tested and certified barriers is maintained on the USACE’s website.

For those managing utility sites, protection from threat that could compromise supply or staff is paramount. Perimeter security is the foundation to any complete system, but ensuring compliance at this level is only beneficial as part of a holistic approach to overall security with seamless protection. An expert solutions provider can lead on this for you, ensuring your security system is not only up to code, but has complete interoperability.

This article originally appeared in the November/December 2019 issue of Security Today.

Featured

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

  • AI Used as Part of Sophisticated Espionage Campaign

    A cybersecurity inflection point has been reached in which AI models has become genuinely useful in cybersecurity operation. But to no surprise, they can used for both good works and ill will. Systemic evaluations show cyber capabilities double in six months, and they have been tracking real-world cyberattacks showing how malicious actors were using AI capabilities. These capabilities were predicted and are expected to evolve, but what stood out for researchers was how quickly they have done so, at scale. Read Now

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises.