5G Inherits Some 4G Vulnerabilities

Commercial 5G mobile networks are only just becoming available, with highly developed use cases for improving autonomous automobiles navigation and smart-sensor networks, and new vulnerabilities and security requirements are already emerging. Although 5G networks promise improvements in device authentication, traffic encryption, privacy protections for device IDs and credentials, many of the security protocols and algorithms for 5G are being ported from the previous 4G standard. That means these newer networks may suffer from many of the same vulnerabilities, at least in the short-term.

Indeed, researchers have found that cyber criminals can exploit device fingerprinting for targeted attacks as well as the possibility of man-in-the-middle offensives, even in 5G, according to Altaf Shaik, principal researcher at Kaitiaki Labs. Speaking on “New Vulnerabilities in 5G Networks” at the recent Black Hat USA conference, Shaik discussed multiple ways in which 5G networks could be compromised.

For example, since 5G networks are made up of base stations covering a specific area, they connect to a mobile edge cloud, which in turn connects to the core network. To get to a carrier network, 5G devices send device-capability data to the base station, which passes it on along the chain for eventual authentication to the core network. This data can incorporate include information about voice calling, SMS ability, vehicle-to-vehicle communication support, frequency bands used, and the device category as well as radio requirements.

At Black Hat, Shaik pointed out that in forthcoming 5G networks, the device capability information is sent to the base station before any security is layered onto the connection. Over-the-air security includes encryption of traffic from the endpoint to a base station; but since the device capabilities are transmitted prior to that taking effect, hackers can see this information in plain text. Hence, according to Shaik, 5G networks could still allow for a few types of attack:

Mobile network mapping (MNmap): Using real devices and commercial networks in Europe and the United States, Shaik's research team was able to sniff the information sent by the device in plain text and use it to create a map of devices connected to a given network. “We set up a fake base station to receive the capabilities of the devices,” Shaik said. “We categorized maker, model, OS, use case and version. This allows you to identify any cellular device in the wild. You can tell if a device is Android or iOS, if it’s IoT or a phone, if it’s a car modem, a router, a USB dongle, or a vending machine.”

That information paves the way for targeted attacks against a specific device or a whole class of devices, Shaik said. “You can plan a targeted attack against a certain kind of device – such as those used in field testing, or military devices. There’s also a privacy aspect here because you can link the [mobile subscriber ID] to a specific person.”

MiTM attacks: Man-in-the-middle attacks become relevant when hackers hijack the device information before security is applied -- as it is being sent to the base station. “You can take this data and modify the capabilities” of the device, Shaik said. Attackers could alter the frequency band information for a device to prevent handovers or roaming; or they could disable voice over LTE, which makes a phone revert to 3G/2G voice calling. These changes can also force the draining of IoT device batteries.

In his tests, Shaik reported that 22 out of 32 tested LTE networks worldwide were vulnerable to these types of attacks, with most of the tampering persisting for an average of seven days. He reported his findings to standards organizations and hopes to see fixes implemented by vendors next year.

“This is a problem, a fundamental issue that was ported from 4G,” Shaik said. “But in 5G, there are more use cases and more capabilities that define exactly what kind of device it is, making targeting that much easier.”

About the Author

Karen Epper Hoffman is a freelance writer based in the Seattle area.

Featured

  • TSA Intercepts 6,678 Firearms at Airport Security Checkpoints in 2024

    During 2024, the Transportation Security Administration (TSA) intercepted a total of 6,678 firearms at airport security checkpoints, preventing them from getting into the secure areas of the airport and onboard aircraft. Approximately 94% of these firearms were loaded. This total is a minor decrease from the 6,737 firearms stopped in 2023. Throughout 2024, TSA managed its “Prepare, Pack, Declare” public awareness campaign to explain the steps for safely traveling with a firearm. Read Now

  • 2024 Gun Violence Report: Fewer Overall Incidents, but School Deaths and Injuries Are on the Rise

    Omnilert, provider of gun detection technology, today released its compilation of Gun Violence Statistics for 2024 summarizing gun violence tragedies and their adverse effects on Americans and the economy. While research showed a decrease in overall deaths and injuries, the rising number of school shootings and fatalities and high number of mass shootings underscored the need to keep more people safe in schools as well as places of worship, healthcare, government, retail and commerce, finance and banking, hospitality and other public places. Read Now

  • Survey: Only 7 Percent of Business Leaders Using AI in Physical Security

    A new survey from Pro-Vigil looks at video surveillance trends, how AI is impacting physical security, and more. Read Now

  • MetLife Stadium Uses Custom Surveillance Solution from Axis Communications

    Axis Communications, provider of video surveillance and network devices, today announced the implementation of a custom surveillance solution developed in collaboration with the MetLife Stadium security team. This new, tailored solution will help the venue augment its security capabilities, providing high-quality video at unprecedented distances and allowing the security team to identify details from anywhere in the venue. Read Now

Featured Cybersecurity

Webinars

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3