Secure Your Containers

Maintaining the integrity of cloud containers is critical

Development and deployment of container-based software has become a popular movement in technology. Docker, and container technology in general, is redefining cloud computing and offers significant benefits to developers and companies, including efficiency, cost savings, consistency, reliability and scalability for the entire DevOps processes. However, for enterprises running sensitive applications at scale using Docker, securing and maintaining the integrity of cloud containers is a critical aspect of DevOps.

A new approach proving effective is to run the cloud containers in a trusted environment, also known as a secure enclave, protected by hardware such as Intel SGX or AMD SEV. The secure enclave technology removes the risk associated with trusting the infrastructure or a user. Even if the infrastructure is comprised or the root user is hacked, the application remains secure.

Here is an illustration to better understand why this is important. An employee, Bill has decided to roll out a hotel reservation website using Kubernetes to scale and handle peak loads. Since the website will also collect guests’ personal information, security is a prime concern for Bill. Bill reaches out to Lori, the CISO, with a plan for security that includes database encryption and TLS.

Lori offers the tough question: “What about data in use?” She knows that even if data is carefully safeguarded while at rest and when exchanged over secure channels such TLS, data gets decrypted for use in memory, making software containers a good attack target for hackers in the cloud.

Bill does his homework and decides that running securitycritical services in Intel SGX secure enclaves is the only way to satisfy Lori’s security requirements. However, this also introduces various challenges to system administrators and developers:

  • Since running in Intel SGX involves making OCALLS (a new set of hardware instructions), instead of standard system calls, the applications need to be heavily refactored. This is almost impossible if applications are written in popular programming languages such as Java or Python.
  • Simply running an application (or its sensitive parts) within an enclave is not entirely sufficient. To fully utilize the security guarantees of Intel SGX, the user must also verify the integrity of the application, including whether it is running unmodified inside a secure enclave. Intel provides a way for users to achieve this using remote attestation. The remote attestation flow is complex, depends on the external Intel Attestation Service (IAS), and requires modifications to the application setup.
  • When running applications at scale, it becomes difficult to track the attestation status of every instance and apply software patches.

The security guarantees delivered by Intel SGX secure enclaves are promising, but by themselves introduce a level of cost and complexity. A new technology called runtime encryption is proving to be a successful approach to addressing these challenges, runtime encryption platform, which when combined with Intel SGX secure enclaves enables containers to be securely executed inside Intel SGX secure enclaves without the cost and complexity of using Intel SGX alone.

Runtime encryption’s approach is to decrypt and analyze data only when it is within a secure enclave protected by hardware technologies such as Intel SGX or AMD SEV. This new technology enables software to safely run in a secure enclave, creates keys to decrypt data, runs the analysis, and encrypts the result.

Other than runtime encryption, there are practically no solutions available which let organizations run containers in the cloud securely, while adhering to regulations and privacy. Runtime encryption can help organizations meet compliance requirements for regulations such as GDPR, California Consumer Privacy Act, and other similar regulations.

Runtime encryption also provides fine-grained access controls for the datasets in use in containers. With this new approach, the aggregate data is never exposed outside the secure enclave. Private analytics with runtime encryption are an easy to use, efficient, and offer a scalable approach which is critical for deploying containers.

Also, with runtime encryption, organizations can monitor the lifecycle of secure enclaves that run the container applications. Runtime encryption provides features such remote attestation, geolocation enforcement, DRM and secret injections. The platform seamlessly integrates with existing container orchestration technologies, including Kubernetes, Docker Swarm and OpenShift.

Containerization offers significant advantages to organizations, but only if they can keep their cloud data safe. Secure enclaves now combined with runtime encryption technology offer an effective, easy-to-use and low-cost solution to what was previously an unaddressed issue of migrating to the cloud.

This article originally appeared in the March 2020 issue of Security Today.

Featured

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

New Products

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.