Today’s Essentials

Gigabit mmWave essential for today’s HD video security systems

Many of today’s video security systems feature 4K HD video to help human operators monitor and react better, but also to provide the best possible raw video data for the AI and machine learning programs that are used to continuously enhance operations. The transition from analog to IP and multi-sensor cameras, often mounted on rooftops, light poles and other “street furniture,” also is driving huge amounts of bandwidth across these networks.

As fiber cannot connect everything, private companies, municipalities and other public entities need Gigabit speed mmWave wireless connectivity to make it work properly. Wireless has long been used for security network operations, but today’s surveillance and “interactive” requirements are outstripping the capabilities of legacy systems, such as those operating in the 5 GHz bands.

Due to massive deployments of Wi-Fi, it is common to encounter extremely high levels of “RF noise,” which is likely to cause signal interruptions that result in video packet loss and other errors.

Therefore, operators are looking to extend fiber reach by using the higher bands, such as the 60 GHz V-band and the 70/80 GHz E-band, where the spectrum is essentially free of interference (now and for the foreseeable future) and there is plenty of bandwidth available. These two attributes combined create the perfect conditions to establish the Gigabit-speed connections to support these video requirements and illustrate once again how mmWave and existing fiber plant complement each other very well.

THE FOUR PILLARS

In terms of network requirements, advanced analytics based on AI is taking over the industry and it rests on four “pillars” in order to work properly. First, the cameras themselves are moving beyond pixels, with multi-sensor cameras increasing, and image processing split between the cloud and “the edge” (where the cameras are installed). Essentially, they are pushing the amount of video information beyond what the human eye can see and the brain can process.

Therefore, with AI-based analytic goals such as 95 percent or better detection rates and a false positive ratio of only 1 in 25,000, the three other pillars concern characteristics of the “feeds” or traf- fic traversing the network. In terms of signal quality, video resolution must be 1080P or better (as in the migration to 4K currently underway) and frame rates are at a minimum of 30 FPS and will soon be 60 FPS. As for transmission, zero packet loss is a must, and jitter must be tightly controlled. Lastly, reliability or network availability, must meet the “five 9s” standard at a minimum (which is defined as “carrier grade”) and the protection from the elements must meet the IP67 standard for outdoor operation.

Figure 1 shows the connectivity options for video surveillance. The attributes and comparisons there are self-explanatory, but one area might require a bit more explanation – the use of mmWave in mobile 5G, aka “5G NR.” First, the 5G NR mmWave bands do offer multi-Gig capacity, high-security and other benefits, but they are not the same spectrum as the V- or E-bands. These bands are licensed to mobile carriers and hence a security firm seeking to use this technology has to sign up with the carrier -- and pay carrier pricing. With data traffic from a single camera reaching the Terabits per month range, monthly fees could be massive.

THE LICENSE FEE

Contrast this to V-Band where the spectrum is license free in the United States and most countries. The E-Band is a lightly licensed frequency in most countries and can be done online. The license is generated quickly (within 24 hours typically) and the cost is usually low,for instance, only $75 per link for a 10 year license in the United States. Further, mmWave networks by their very nature, such as transmission beams, coupled with advanced encryption, ensure a secure network.

Network integrator firms who specialize in security, such as Blue Violet Networks, have recently deployed V- or E-band systems in settings such as large community colleges – large, for example, in terms of enrollment (more than 20,000) and size (a campus of 50 square acres or more). Community colleges do not have on-campus housing, which means a lot of traffic (automobile, bicycle, foot) transiting on and off.

Consequently, large parking lots and walking or bike paths to academic and other buildings occupy a significant portion of the campus space. This environment therefore presents a challenging security situation in terms of monitoring those affiliated with the college and those who are not.

In this case, the college (Irvine Valley College in California) decided to install multi-sensor cameras on lamp posts in parking lots and other common areas. The first phase called for 19 cameras, with a minimum connectivity requirement of 50 MBps for each. Fiber was considered but the administration deemed its deployment too disruptive and cost-prohibitive.

Other wireless technologies did not have sufficient aggregate bandwidth and had too much interference in this suburban location. Blue Violet Networks decided to install a network of 28 V-band radios, which would provide multi-Gigabit capacity. Including associated power equipment and enclosures and a control center installed in the “PD HQ,” the cost of this “fixed wireless” installation generated a savings of more than $500,000, as compared to a fiber or wireline approach.

The college then used this de facto savings to install 20 more cameras and more than 40 mmWave radios to create “blanket” coverage throughout the campus and enough “room” to accommodate future bandwidth requirements(including public Wi-Fi hotspots). Furthermore, these additional cameras and wireless equipment were installed in less than four weeks, as compared to an estimated four months and many times the cost of using fiber alone.

This article originally appeared in the October 2020 issue of Security Today.

Featured

  • Maximizing Your Security Budget This Year

    Perimeter Security Standards for Multi-Site Businesses

    When you run or own a business that has multiple locations, it is important to set clear perimeter security standards. By doing this, it allows you to assess and mitigate any potential threats or risks at each site or location efficiently and effectively. Read Now

  • Getting in Someone’s Face

    There was a time, not so long ago, when the tradeshow industry must have thought COVID-19 might wipe out face-to-face meetings. It sure seemed that way about three years ago. Read Now

    • Industry Events
    • ISC West
  • Live From ISC West 2024: Post-Show Recap

    ISC West 2024 is complete. And from start to finish, the entire conference was a huge success with almost 30,000 people in attendance. Read Now

    • Industry Events
    • ISC West
  • ISC West 2024 is a Rousing Success

    The 2024 ISC West security tradeshow marked a pivotal moment in the industry, showcasing cutting-edge technology and innovative solutions to address evolving security challenges. Exhibitors left the event with a profound sense of satisfaction, as they witnessed a high level of engagement from attendees and forged valuable connections with potential clients and partners. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

Webinars

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge. 3