Technology counts on AI to authenticate and identify people

Always Surrounded

Technology counts on AI to authenticate and identify people

Not long ago, artificial intelligence was viewed as science fiction. Today, it routinely makes our lives more secure and convenient. AI surrounds us in our everyday lives. Online entertainment providers use it to suggest movies, TV shows and music we might enjoy. Retailers try to influence our current buying decisions based on previous purchases. Chatbots help us make appointments with service providers.

The security industry also deploys artificial intelligence in many ways. Facial recognition counts on AI to authenticate and identify people by the shapes of their faces and features. Robots and drones patrol perimeters looking for anomalies, leaving human officers free to handle other potential threats and events. AI-based software checks feeds from central video monitoring stations to filter out false alarms.

Diving a Little Deeper into the Technology
In recent years, the use of artificial intelligence and its subsets, machine learning and deep learning, have increased exponentially. AI technology enables computers to mimic human intelligence using logic based on if-then rules and decision trees. Statistic techniques used in machine learning allows computers to improve at tasks with experience. Deep learning enables networks to train themselves to perform tasks such as speech and image recognition. There are two main ways of working with these technologies – rule-based algorithms and neural networks.

Rule-based algorithms have limitations. Even the most experienced computer engineer can't prepare for all potential situations that might arise within a camera's field of view or an employee arrives at a building entrance with his face covered with a mask and goggles. As a result, these algorithms offer reduced accuracy. While it's not accurate to say neural networks work like a human brain, they are inspired by it. Neural-node networks are computing systems that learn to perform tasks by considering examples rather than being programmed with task-specific rules. The machine-learning model memorizes its training data an makes predictions based on specific sets of situations.

For instance, it only recognizes human activity if it matches previous examples. That's why training software to identify human beings or vehicles reliably requires exposing the neural network to millions of images.

The network makes predictions about each presented image and is corrected by humans when it makes mistakes. Neural nodes are layered, each analyzing an image element. A prediction is made once the image passes through and is processed by the network.

Improving Accuracy
Network accuracy improves until it outperforms other methods. Over time, the network will reliably predict the presence of humans and vehicles or whatever else it is trained to recognize. What makes these networks so powerful is their ability to generalize concepts they've learned and then apply them to images they never before have seen.

An example I often use is that of a cat. Ask 10 people to think of a feline and most likely, you'll get 10 different answers based on distinct breeds, sizes, fur colors and many other features. However, all would recognize each person's visualization as some type of a cat.

Let's take a look at an everyday use of deep learning to understand better how it impacts the security industry. Video monitoring center operators are exposed to hundreds or thousands of alarm images per shift. Blowing leaves, lighting changes or a spider building a web in front of a camera lens may trigger a false alarm. Traditionally, 95% or more of incoming alarms are false. Today's deep learning networks can eliminate up to 99% of false alarms.

Improved security is one result. By reducing the false alarm noise, operators are less likely to miss genuine alerts. Operators' ability to focus on potentially criminal activity reduces response time if law enforcement or security guards must be dispatched.

Monitoring cameras for hours is a demanding job, made more so by dealing with false alarms. False alarm reduction software improves employee morale, reducing turnover in the process. By focusing on true alarms, operators become more productive, enabling a station to add more cameras or new customers without hiring new employees.

The cloud-based AI software requires no hardware devices to be installed at an end-user's site. Future upgrades are managed remotely by the service provider.

Predicting criminal behavior is likely the next big step in deep learning video analytics. Neural networks use the same training methods to learn actions likely to precede a crime. This is a big step as the software must recognize humans and identify things that people interact within their environment.

Tremendous advancements in computational power made artificial intelligence and deep learning possible. Now, these technologies' highly accurate decision-making enables us to do things better and faster than before. It is encouraging to know these platforms continue and learn and improve over time.

Featured

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

New Products

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”