Always Surrounded

Technology counts on AI to authenticate and identify people

Not long ago, artificial intelligence was viewed as science fiction. Today, it routinely makes our lives more secure and convenient. AI surrounds us in our everyday lives. Online entertainment providers use it to suggest movies, TV shows and music we might enjoy. Retailers try to influence our current buying decisions based on previous purchases. Chatbots help us make appointments with service providers.

The security industry also deploys artificial intelligence in many ways. Facial recognition counts on AI to authenticate and identify people by the shapes of their faces and features. Robots and drones patrol perimeters looking for anomalies, leaving human officers free to handle other potential threats and events. AI-based software checks feeds from central video monitoring stations to filter out false alarms.

DIVING A LITTLE DEEPER INTO THE TECHNOLOGY

In recent years, the use of artificial intelligence and its subsets, machine learning and deep learning, have increased exponentially. AI technology enables computers to mimic human intelligence using logic based on if-then rules and decision trees. Statistic techniques used in machine learning allows computers to improve at tasks with experience. Deep learning enables networks to train themselves to perform tasks such as speech and image recognition. There are two main ways of working with these technologies – rule-based algorithms and neural networks.

Rule-based algorithms have limitations. Even the most experienced computer engineer can’t prepare for all potential situations that might arise within a camera’s field of view or an employee arrives at a building entrance with his face covered with a mask and goggles. As a result, these algorithms offer reduced accuracy.

While it’s not accurate to say neural networks work like a human brain, they are inspired by it. Neural-node networks are computing systems that learn to perform tasks by considering examples rather than being programmed with task-specific rules. The machine-learning model memorizes its training data and makes predictions based on specific sets of situations.

For instance, it only recognizes human activity if it matches previous examples. That’s why training software to identify human beings or vehicles reliably requires exposing the neural network to millions of images.

The network makes predictions about each presented image and is corrected by humans when it makes mistakes. Neural nodes are layered, each analyzing an image element. A prediction is made once the image passes through and is processed by the network.

IMPROVING ACCURACY

Network accuracy improves until it outperforms other methods. Over time, the network will reliably predict the presence of humans and vehicles or whatever else it is trained to recognize. What makes these networks so powerful is their ability to generalize concepts they’ve learned and then apply them to images they never before have seen.

An example I often use is that of a cat. Ask 10 people to think of a feline and most likely, you’ll get 10 different answers based on distinct breeds, sizes, fur colors and many other features. However, all would recognize each person’s visualization as some type of a cat.

Let’s take a look at an everyday use of deep learning to understand better how it impacts the security industry. Video monitoring center operators are exposed to hundreds or thousands of alarm images per shift. Blowing leaves, lighting changes or a spider building a web in front of a camera lens may trigger a false alarm. Traditionally, 95% or more of incoming alarms are false. Today’s deep learning networks can eliminate up to 99% of false alarms.

Improved security is one result. By reducing the false alarm noise, operators are less likely to miss genuine alerts. Operators’ ability to focus on potentially criminal activity reduces response time if law enforcement or security guards must be dispatched.

Monitoring cameras for hours is a demanding job, made more so by dealing with false alarms. False alarm reduction software improves employee morale, reducing turnover in the process. By focusing on true alarms, operators become more productive, enabling a station to add more cameras or new customers without hiring new employees.

The cloud-based AI software requires no hardware devices to be installed at an end-user’s site. Future upgrades are managed remotely by the service provider.

Predicting criminal behavior is likely the next big step in deep learning video analytics. Neural networks use the same training methods to learn actions likely to precede a crime. This is a big step as the software must recognize humans and identify things that people interact within their environment.

Tremendous advancements in computational power made artificial intelligence and deep learning possible. Now, these technologies’ highly accurate decision-making enables us to do things better and faster than before. It is encouraging to know these platforms continue and learn and improve over time.

This article originally appeared in the May June 2021 issue of Security Today.

Featured

  • Evolving Cybersecurity Strategies: Uniting Human Risk Management and Security Awareness Training

    Organizations are increasingly turning their attention to human-focused security approaches, as two out of three (68%) cybersecurity incidents involve people. Threat actors are shifting from targeting networks and systems to hacking humans via social engineering methods, living off human errors as their most prevalent attack vector. Whether manipulated or not, human cyber behavior is leveraged to gain backdoor access into systems. This mainly results from a lack of employee training and awareness about evolving attack techniques employed by malign actors. Read Now

  • Report: 1 in 3 Easily Exploitable Vulnerabilities Found on Cloud Assets

    CyCognito recently released new research highlighting critical security vulnerabilities across cloud-hosted assets, revealing that one in three easily exploitable vulnerabilities or misconfigurations are found on cloud assets. As organizations increasingly shift to multi-cloud strategies, the findings underscore significant security gaps that could provide attackers with potential footholds into networks. Read Now

  • Built for Today, Ready for Tomorrow

    Selecting the right VMS is critical for any organization that depends on video surveillance to ensure safety, security and operational efficiency. While many organizations focus on immediate needs such as budget and deployment size, let us review some of the long-term considerations that can significantly impact a VMS's utility and flexibility. Read Now

  • Paving the Way to Smart Buildings

    In today's rapidly evolving security landscape, the convergence of on-prem, edge and cloud technologies are critical. The physical security landscape is undergoing a profound transformation, driven by the rapid digitalization of buildings and the evolving needs of modern organizations. As the buildings sector pivots towards smart, AI and data-driven operations, the integration of both edge and cloud technology has become crucial. Read Now

  • The Cybersecurity Time Bomb

    If you work in physical security, you have probably seen it: a camera, access control system, or intrusion detection device installed years ago, humming along without a single update. It is a common scenario that security professionals have come to accept as "normal." But here is the reality: this mindset is actively putting organizations at risk. Read Now

New Products

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.