Always Surrounded

Technology counts on AI to authenticate and identify people

Not long ago, artificial intelligence was viewed as science fiction. Today, it routinely makes our lives more secure and convenient. AI surrounds us in our everyday lives. Online entertainment providers use it to suggest movies, TV shows and music we might enjoy. Retailers try to influence our current buying decisions based on previous purchases. Chatbots help us make appointments with service providers.

The security industry also deploys artificial intelligence in many ways. Facial recognition counts on AI to authenticate and identify people by the shapes of their faces and features. Robots and drones patrol perimeters looking for anomalies, leaving human officers free to handle other potential threats and events. AI-based software checks feeds from central video monitoring stations to filter out false alarms.

DIVING A LITTLE DEEPER INTO THE TECHNOLOGY

In recent years, the use of artificial intelligence and its subsets, machine learning and deep learning, have increased exponentially. AI technology enables computers to mimic human intelligence using logic based on if-then rules and decision trees. Statistic techniques used in machine learning allows computers to improve at tasks with experience. Deep learning enables networks to train themselves to perform tasks such as speech and image recognition. There are two main ways of working with these technologies – rule-based algorithms and neural networks.

Rule-based algorithms have limitations. Even the most experienced computer engineer can’t prepare for all potential situations that might arise within a camera’s field of view or an employee arrives at a building entrance with his face covered with a mask and goggles. As a result, these algorithms offer reduced accuracy.

While it’s not accurate to say neural networks work like a human brain, they are inspired by it. Neural-node networks are computing systems that learn to perform tasks by considering examples rather than being programmed with task-specific rules. The machine-learning model memorizes its training data and makes predictions based on specific sets of situations.

For instance, it only recognizes human activity if it matches previous examples. That’s why training software to identify human beings or vehicles reliably requires exposing the neural network to millions of images.

The network makes predictions about each presented image and is corrected by humans when it makes mistakes. Neural nodes are layered, each analyzing an image element. A prediction is made once the image passes through and is processed by the network.

IMPROVING ACCURACY

Network accuracy improves until it outperforms other methods. Over time, the network will reliably predict the presence of humans and vehicles or whatever else it is trained to recognize. What makes these networks so powerful is their ability to generalize concepts they’ve learned and then apply them to images they never before have seen.

An example I often use is that of a cat. Ask 10 people to think of a feline and most likely, you’ll get 10 different answers based on distinct breeds, sizes, fur colors and many other features. However, all would recognize each person’s visualization as some type of a cat.

Let’s take a look at an everyday use of deep learning to understand better how it impacts the security industry. Video monitoring center operators are exposed to hundreds or thousands of alarm images per shift. Blowing leaves, lighting changes or a spider building a web in front of a camera lens may trigger a false alarm. Traditionally, 95% or more of incoming alarms are false. Today’s deep learning networks can eliminate up to 99% of false alarms.

Improved security is one result. By reducing the false alarm noise, operators are less likely to miss genuine alerts. Operators’ ability to focus on potentially criminal activity reduces response time if law enforcement or security guards must be dispatched.

Monitoring cameras for hours is a demanding job, made more so by dealing with false alarms. False alarm reduction software improves employee morale, reducing turnover in the process. By focusing on true alarms, operators become more productive, enabling a station to add more cameras or new customers without hiring new employees.

The cloud-based AI software requires no hardware devices to be installed at an end-user’s site. Future upgrades are managed remotely by the service provider.

Predicting criminal behavior is likely the next big step in deep learning video analytics. Neural networks use the same training methods to learn actions likely to precede a crime. This is a big step as the software must recognize humans and identify things that people interact within their environment.

Tremendous advancements in computational power made artificial intelligence and deep learning possible. Now, these technologies’ highly accurate decision-making enables us to do things better and faster than before. It is encouraging to know these platforms continue and learn and improve over time.

This article originally appeared in the May June 2021 issue of Security Today.

Featured

  • Allegion, Comfort Technologies Implement Mobile Credentials at the Artisan Apartment Homes in Florida

    Artisan Apartment Homes, a luxury apartment complex in Dunedin, Florida, recently transitioned from mechanical keys to electronic locks and centralized system software with support from Allegion US, a leading provider of security solutions, technology and services, and Florida-based Comfort Technologies, which specializes in deploying multifamily access control, IoT devices and software management solutions. Read Now

  • Mall of America Deploys AI-Powered Analytics to Enhance Parking Intelligence

    Mall of America®, the largest shopping and entertainment complex in North America, announced an expansion of its ongoing partnership with Axis Communications to deploy cutting-edge car-counting video analytics across more than a dozen locations. With this expansion, Mall of America (MOA) has boosted operational efficiency, improved safety and security, and enabled more informed decision-making around employee scheduling and streamlining transportation for large events. Read Now

  • Security Industry Association Launches New “askSIA” AI Tool

    The Security Industry Association (SIA) has unveiled a brand-new SIA member benefit – askSIA, a conversational AI agent designed to help users get the most out of their SIA membership, easily access SIA resources and find the latest information on SIA’s training and courses, reports and publications, events, certification offerings and more. SIA members can easily find askSIA by visiting the SIA homepage or looking for the askSIA icon in the top left of webpages. Read Now

    • Industry Events
  • Industry Embraces Mobile Access, Biometrics and AI

    A combination of evolving workplace dynamics, technology innovation and new user expectations is changing how people enter and interact with physical spaces. Access control is at the heart of these changes. Combined with biometrics and AI, mobile access control has become increasingly crucial for deploying entry solutions that are seamless, secure and adaptive to user needs. Read Now

  • Sustainable Video Solution Delivered for Landmark City of London Office Development

    An advanced, end-to-end video solution from IDIS, with a focus on reducing waste and costs, has helped a major office development in the City of London align its security with sustainability objectives. Read Now

New Products

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.