Researchers Develop Effective, Low-Cost Defense Against Computer Worms

Thanks to an new strategy devised by researchers at the University of California, Davis, and Intel Corp., computer network administrators might soon be able to mount effective, low-cost defenses against self-propagating infectious programs known as worms.

Many computers are already equipped with software that can detect when another computer is attempting to attack it. Yet the software usually cannot identify newly minted worms that do not share features with earlier marauders. When network managers detect suspicious activity, they face a major dilemma, said Senthil Cheetancheri, who led efforts to develop the strategy. “The question is, ‘Should I shut down the network and risk losing business for a couple of hours for what could be a false alarm, or should I keep it running and risk getting infected?’”

Cheetancheri, a graduate student in the Computer Security Laboratory at UC Davis when he did the work, has shown that the conundrum can be overcome by enabling computers to share information about anomalous activity. As signals come in from other machines in the network, each computer compiles the data to continually calculate the probability that a worm attack is under way.

“One suspicious activity in a network with 100 computers can’t tell you much,” he said. “But when you see half a dozen activities and counting, you know that something’s happening.”

The second part of the strategy is an algorithm that weighs the cost of a computer being disconnected from the network against the cost of it being infected by a worm. Results of this ongoing process depend on the calculated probability of an attack, and vary from computer to computer depending on what the machine is used for. The algorithm triggers a toggle to disconnect the computer whenever the cost of infection outweighs the benefit of staying online, and vice versa.

The computer used by a person working with online sales, for example, might be disconnected only when the threat of an attack is virtually certain -- the benefit she provides by continuing to work during false alarms far outweighs the cost of infection. On the other hand, a computer used by a copywriter who can complete various tasks offline might disconnect whenever the probability of an attack rises above even a very low level.

The study is published in “Recent Advances in Intrusion Detection, 2008,” the proceedings of a symposium that was held in Cambridge, Mass. in September.

Other contributors to the study are John-Mark Agosta with Intel Corporation; Jeff Rowe, research scientist in the UC Davis Computer Security Laboratory; and UC Davis computer science professors Karl Levitt and Felix Wu.

The study was supported by a grant from Intel IT Research.

Featured

  • Maximizing Your Security Budget This Year

    7 Ways You Can Secure a High-Traffic Commercial Security Gate  

    Your commercial security gate is one of your most powerful tools to keep thieves off your property. Without a security gate, your commercial perimeter security plan is all for nothing. Read Now

  • Protecting Data is Critical

    To say that the Internet of Things (IoT) has become a part of everyday life would be a dramatic understatement. At this point, you would be hard-pressed to find an electronic device that is not connected to the internet. Read Now

  • Mobile Access Adoption

    Smartphones and other mobile devices have had a profound impact on how the world securely accesses the workplace and its services. The growing adoption of mobile wallets and the new generation of users is compounding this effect. Read Now

  • Changing Mindsets

    We have come a long way from the early days of fuzzy analog CCTV systems. During that time, we have had to migrate from analog to digital signals. When IP-based network cameras arrived, they opened a new world of quality and connectivity but also introduced plenty of challenges. Thankfully, network devices today have become smart enough to discover themselves and even self-configure to some degree. While some IT expertise is certainly required, things are much smoother these days. The biggest change is in how fast security cameras and supporting infrastructure are evolving. Read Now

Featured Cybersecurity

Webinars

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge. 3

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation. 3