Finding the Right Formula

Standardized security methodologies do not work for chemical facilities

Following the Sept. 11, 2001, terrorist attacks, the government instituted increased levels of security planning for critical infrastructures in the United States. Not surprisingly, the petrochemical industry is one of 14 sectors deemed by the Patriot Act of 2001 to be of high criticality and sensitivity.

Shortly after the events of 9/11, the chemical industry developed its own standards for site and process security, with an emphasis on self-regulation. After more evaluation of the vulnerability and potential consequences of a major catastrophic event resulting from terrorist activity at a chemical site, on Oct. 4, 2006, President Bush signed the Chemical Facility Anti-Terrorism Standards into law. CFATS is intended to enhance the security of U.S. chemical plants against terrorist attacks that could affect the public safety and health, result in debilitating consequences for the U.S. economy or one of its sectors, and diminish the mission of government.

The Department of Homeland Security began to consider how it might regulate security at identified high-risk chemical facilities. Various security methodologies have been developed by government agencies for other sectors but upon review were found to be unsuitable for chemical facilities.

For example, a prescribed, one-approach-fits-all security methodology was created to safeguard the nearly 9,000 federal buildings across the country. In this approach, security is divided into five levels, depending on the risk and event consequences associated with the buildings. The process is effective in protecting buildings and personnel but is lacking when applied to chemical facilities. More security is not always better security. Mitigating vulnerabilities from different risks requires different combinations of security measures and processes—the opposite of a cookie-cutter approach.

Another security methodology employed by government mandating exact security requirements, such as those used to protect air transportation. Requiring the implementation of uniform security systems and procedures minimizes potential security gaps from one facility to the next. This is important because air transportation operates as a single network. A security vulnerability at one location creates a security vulnerability for all locations.

While a single over-arching security system has proven effective in air transportation, it would be highly impractical and inefficient for chemical facilities, which require flexible security solutions. A more rigorous security process is essential.

According to data from the Environmental Protection Agency, 123 U.S. chemical facilities have hazardous materials that could expose more than 1 million people in surrounding areas to a toxic cloud. Furthermore, chemicals at 700 additional facilities each potentially threaten at least 100,000 people in surrounding areas. In the 1984 Bhopal disaster in India, water entered a tank containing 42 tons of methyl isocyanate, creating a large volume of toxic gases that spread to nearby population centers. It is estimated as many as 8,000 people died. The incident is frequently cited as the world’s worst industrial accident. It also serves as an example of what could happen in a terrorist attack on a chemical facility. Although the probability of such an attack is low, the consequences could be very high.

Recognizing the need for a different approach to security at U.S. chemical facilities, Congress directed DHS to develop a security methodology based upon “riskbased performance standards.” The department subsequently formulated 18 RBPS, which high-risk chemical facilities must apply when developing a security plan. If this process is successful, it will likely become the standard used by government to safeguard other critical infrastructure.

DHS is not telling facilities what security measures and practices need to be implemented. Instead, the department has mandated how chemical facilities should develop a security plan. The performance standards specify the outcome required and leave the details to the chemical facilities. It is important to note that DHS may not disapprove a site’s security plan based on the presence or absence of a particular security measure, but it may disapprove a plan if it fails to satisfy the RBPS.

This approach has many advantages. Plans produced by chemical facilities will be tailored to mitigate identified vulnerabilities. The process provides flexibility and ensures that plans will reduce security risks and are cost effective.

Security systems for a manufacturing facility with large tanks of hazardous chemicals will be different than those required to safeguard a facility that produces organic chemicals that can be used to build an explosive device.

In the first case, good perimeter security is paramount to protecting against sabotage. The company that manufactures the organic chemicals also must have reasonable perimeter security. But of greater concern is the risk from theft or diversion, which is best mitigated by installing a reliable inventory control system. To reduce vulnerabilities, chemical facilities in these examples require comprehensive security plans that incorporate sophisticated security strategies and countermeasures. However, the protocols selected for each facility are necessarily different.

Chemical facilities are now developing site security plans or will begin the process soon. After plans are completed, they will be reviewed by DHS. Upon preliminary approval, inspectors will travel to facilities to determine if they are in compliance with their plan. If so, DHS will issue a letter of approval to individual facilities, not the company as a whole. Afterward, chemical facilities are required to regularly update their SSPs, provide training and conduct annual tests and exercises. Those that fail to produce an adequate security plan can be fined up to $25,000 a day and even be shut down.

According to DHS, meeting security requirements based on their risk profile will be a heavy lift for some chemical facilities. But there are no shortcuts to good security.

This article originally appeared in the issue of .

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge. 3

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3