Security’s Role in the Smart-card Game

Smart cards are the first truly successful mass-market semiconductor segment with the primary objective of providing security. Unlike holograms, magnetic-stripe cards and most RFID chips, smart cards can perform cryptographic computations using on-chip keys. As a result, a smart card can authenticate itself to other devices without revealing its secrets.

This capability has proved valuable for a wide range of applications. For example, smart cards for banking are ubiquitous outside the United States and have played a major role in managing fraud by securely authenticating account holders. In fact, securely binding a user’s identity to a card is a common feature across many smart-card applications, including transport, healthcare, passport and identification, and the largest smart-card segment, SIMs for mobile phones. The importance of smart cards is reflected in their ubiquity; about 5 billion smart cards are produced annually.

Smart cards have played a major role in the development of semiconductor security technologies over the past decades. The evolution of sophisticated tamper-resistance mechanisms and secure design methodologies, including countermeasures to side channel attacks, has largely been driven by the smart-card industry’s need to protect on-chip secrets.

We are now seeing similar tools and techniques being adopted in a wide range of other technology products.

For example, the development of new payment platforms is creating requirements for tamper-resistant cryptographic implementations for mobile phones and other devices. Similar needs also are appearing in the entertainment, embedded systems, network access and power metering fields.

Smart cards also have played an important role in making strong security cost effective. The average smart-card chip sells for less than $1. Even low-end chips support standard cryptographic algorithms, such as AES, which are mathematically extremely secure. But chips do vary in their protection against attackers who have physical possession of the chip and are seeking to extract secret keys. While no physical device can be perfectly secure against such attacks, smart-card chips that cost a few dollars can often provide similar protection to hardware security modules selling for thousands of dollars.

As we face the challenges of integrating security into an ever-increasing range of products, the security technologies developed to secure smart cards will provide a very useful toolbox.

About the Authors

Paul Kocher is the founder, president and chief scientist at Cryptography Research.

Pankaj Rohatji is the technical director of hardware solutions.

Ken Warren is the smart-card business manager at Cryptography Research.

Featured

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”