Security’s Role in the Smart-card Game

Smart cards are the first truly successful mass-market semiconductor segment with the primary objective of providing security. Unlike holograms, magnetic-stripe cards and most RFID chips, smart cards can perform cryptographic computations using on-chip keys. As a result, a smart card can authenticate itself to other devices without revealing its secrets.

This capability has proved valuable for a wide range of applications. For example, smart cards for banking are ubiquitous outside the United States and have played a major role in managing fraud by securely authenticating account holders. In fact, securely binding a user’s identity to a card is a common feature across many smart-card applications, including transport, healthcare, passport and identification, and the largest smart-card segment, SIMs for mobile phones. The importance of smart cards is reflected in their ubiquity; about 5 billion smart cards are produced annually.

Smart cards have played a major role in the development of semiconductor security technologies over the past decades. The evolution of sophisticated tamper-resistance mechanisms and secure design methodologies, including countermeasures to side channel attacks, has largely been driven by the smart-card industry’s need to protect on-chip secrets.

We are now seeing similar tools and techniques being adopted in a wide range of other technology products.

For example, the development of new payment platforms is creating requirements for tamper-resistant cryptographic implementations for mobile phones and other devices. Similar needs also are appearing in the entertainment, embedded systems, network access and power metering fields.

Smart cards also have played an important role in making strong security cost effective. The average smart-card chip sells for less than $1. Even low-end chips support standard cryptographic algorithms, such as AES, which are mathematically extremely secure. But chips do vary in their protection against attackers who have physical possession of the chip and are seeking to extract secret keys. While no physical device can be perfectly secure against such attacks, smart-card chips that cost a few dollars can often provide similar protection to hardware security modules selling for thousands of dollars.

As we face the challenges of integrating security into an ever-increasing range of products, the security technologies developed to secure smart cards will provide a very useful toolbox.

About the Authors

Paul Kocher is the founder, president and chief scientist at Cryptography Research.

Pankaj Rohatji is the technical director of hardware solutions.

Ken Warren is the smart-card business manager at Cryptography Research.

Featured

  • A Look at AI

    Large language models (LLMs) have taken the world by storm. Within months of OpenAI launching its AI chatbot, ChatGPT, it amassed more than 100 million users, making it the fastest-growing consumer application in history. Read Now

  • First, Do No Harm: Responsibly Applying Artificial Intelligence

    It was 2022 when early LLMs (Large Language Models) brought the term “AI” into mainstream public consciousness and since then, we’ve seen security corporations and integrators attempt to develop their solutions and sales pitches around the biggest tech boom of the 21st century. However, not all “artificial intelligence” is equally suitable for security applications, and it’s essential for end users to remain vigilant in understanding how their solutions are utilizing AI. Read Now

  • Improve Incident Response With Intelligent Cloud Video Surveillance

    Video surveillance is a vital part of business security, helping institutions protect against everyday threats for increased employee, customer, and student safety. However, many outdated surveillance solutions lack the ability to offer immediate insights into critical incidents. This slows down investigations and limits how effectively teams can respond to situations, creating greater risks for the organization. Read Now

  • Security Today Announces 2025 CyberSecured Award Winners

    Security Today is pleased to announce the 2025 CyberSecured Awards winners. Sixteen companies are being recognized this year for their network products and other cybersecurity initiatives that secure our world today. Read Now

  • Empowering and Securing a Mobile Workforce

    What happens when technology lets you work anywhere – but exposes you to security threats everywhere? This is the reality of modern work. No longer tethered to desks, work happens everywhere – in the office, from home, on the road, and in countless locations in between. Read Now

New Products

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities