New Disaster Preparedness Tool From DHS Calculates Casualty Estimates

In the aftermath of a dirty bomb, hundreds or even thousands of victims could require medical attention. First responders conduct extensive training to prepare for such a cataclysmic event, but planning is difficult without a solid estimate of how many people could be injured.

The toll would be influenced by a number of variables. For example, the toll from a dirty bomb detonation would depend upon the population density at the explosion site and the components used in the explosive. To plan effective training scenarios and tabletop exercises, first responders need a simple way to estimate realistic casualty figures as a result of catastrophic events.

To provide first responders with this ability, the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) continues to support the development of the Electronic Mass Casualty Assessment and Planning Scenarios (EMCAPS) software. Sponsored by the National Center for the Study of Preparedness & Catastrophic Event Response (PACER), a DHS Center of Excellence, an updated version of EMCAPS is scheduled for release in 2011. The state of Maryland provided some startup funding for the software program.

Johns Hopkins University Office of Critical Event Preparedness and Response (CEPAR) and the Johns Hopkins University Applied Physics Laboratory are responsible for the software’s development. The current version was first released in 2005 and is available as a free download at http://www.pacercenter.org/pages/about_emcaps.aspx. The program allows first responders to customize nine scenarios for their geographic area and then estimate the number of likely casualties.

Researchers used high-consequence threat scenarios identified by DHS to incorporate into the software program. These include a pandemic flu outbreak, a chlorine gas release, a truck bomb, and inhalation anthrax exposure. The scenarios can be customized for different conditions. Thousands of people have accessed the software, according to Heidi R. Whiteree, DHS S&T program manager. “The advantage of this [program] is it is so easily downloadable, and you can manipulate the variables to suit your own jurisdiction,” said Whiteree.

For example, in the case of a dirty bomb scenario, first responders can customize information about the explosive and detonation site to match their own locations. One way to customize a scenario is to select the population density of the affected area. While a crowded New York City sidewalk might have one person every 25 square feet, a small town’s pedestrian area might contain one person every 225 square feet. A guide in the software assists users in selecting the population density that most closely mirrors the local community.

James Scheulen, chief administrative officer for the Johns Hopkins University School of Medicine’s Department of Emergency Medicine, recognized a need for a technology like EMCAPS when he was attending an emergency response drill several years ago. The drill scenario involved an explosion at a baseball stadium filled with 45,000 fans. As part of the scenario, participants were told to plan to treat 30,000 patients. The number struck Scheulen as unrealistic.

This lack of realism was problematic, because without credible estimates, it is difficult for emergency preparedness officials to judge just how many hospital beds, ambulances, personnel, and equipment truly would be needed in an emergency. EMCAPS mitigates this problem by providing first responders with an estimate rooted in scientific facts. For example, EMCAPS relies on data from explosive experts about the likely force and circumference of a dirty bomb blast to calculate the number of casualties first responders could expect in that situation.

“It’s meant to tell you if you’re talking about 100 people being hurt or 1,000 people being hurt,” Scheulen said. “Now you have some realistic numbers you can use to go about the rest of your planning.”

EMCAPS helps emergency response officials ensure they are ready for a large-scale threat. Melinda Johnson, Metropolitan Medical Response System program coordinator for the north central region of Colorado, began using the software three years ago. With EMCAPS, she can run a scenario and see how the estimated number of patients compares to the surge capacity at area hospitals. If a given situation would overwhelm a particular local hospital, medical personnel would work with local and state officials to move patients to another hospital in the 10-county region or elsewhere in the state. Prior to the creation of EMCAPS, first responders and emergency planners had few tools to calculate the likely impact of an emergency.

“It’s difficult to find an algorithm that says x disaster in this community causes y casualties,” Johnson said.

In addition to estimating the numbers of casualties in a given disaster, EMCAPS lists the kinds of injuries victims are likely to sustain based upon the disaster type. With this information, first responders participating in training scenarios can consider what equipment and planning would be needed to effectively treat patients. Victims of a dirty bomb detonation, for instance, would likely experience partial or total hearing loss. In that situation, first responders must consider ways to effectively communicate with patients during the triage process, according to Scheulen.

When the significantly upgraded version of the software is released next year, it will offer even more scenarios, including earthquakes and hurricanes, so first responders can plan for natural disasters as well as terrorist attacks, according to Whiteree. Researchers are reviewing the existing scenarios to see if the calculations can be improved or updated. The release also will revise the injury severity scale used in the current EMCAPS, according to Johns Hopkins University Applied Physics Laboratory Epidemiologist Jacqueline Coberly. To make the software more applicable to real emergencies, the injury scale in the new version will match the designations used by emergency room doctors to rank injuries.

Johns Hopkins University researchers and DHS also are exploring the possibility of linking future versions of the EMCAPS software to a mapping program, according to Whiteree. The capability would allow first responders to consider the best locations for shelters and other emergency facilities.

Featured

  • The Future of Access Control: Cloud-Based Solutions for Safer Workplaces

    Access controls have revolutionized the way we protect our people, assets and operations. Gone are the days of cumbersome keychains and the security liabilities they introduced, but it’s a mistake to think that their evolution has reached its peak. Read Now

  • A Look at AI

    Large language models (LLMs) have taken the world by storm. Within months of OpenAI launching its AI chatbot, ChatGPT, it amassed more than 100 million users, making it the fastest-growing consumer application in history. Read Now

  • First, Do No Harm: Responsibly Applying Artificial Intelligence

    It was 2022 when early LLMs (Large Language Models) brought the term “AI” into mainstream public consciousness and since then, we’ve seen security corporations and integrators attempt to develop their solutions and sales pitches around the biggest tech boom of the 21st century. However, not all “artificial intelligence” is equally suitable for security applications, and it’s essential for end users to remain vigilant in understanding how their solutions are utilizing AI. Read Now

  • Improve Incident Response With Intelligent Cloud Video Surveillance

    Video surveillance is a vital part of business security, helping institutions protect against everyday threats for increased employee, customer, and student safety. However, many outdated surveillance solutions lack the ability to offer immediate insights into critical incidents. This slows down investigations and limits how effectively teams can respond to situations, creating greater risks for the organization. Read Now

  • Security Today Announces 2025 CyberSecured Award Winners

    Security Today is pleased to announce the 2025 CyberSecured Awards winners. Sixteen companies are being recognized this year for their network products and other cybersecurity initiatives that secure our world today. Read Now

New Products

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles.

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.