Crystals Detect Threats to National Security

Using a crystal ball to protect homeland security might seem far-fetched, but researchers at Wake Forest University and Fisk University have partnered to develop crystals that can be used to detect nuclear threats, radioactive material or chemical bombs more accurately and affordably.

The research is made possible by a $900,000 grant from the Office of Nuclear Nonproliferation Research and Development of the National Nuclear Security Administration, within the U.S. Department of Energy.

The grant will support both universities’ continued research in the area of radiation detection, which ultimately could lead to improved detector devices for screening cargo containers at ports, airports and border crossings. It would detect trace amounts of radioactive or chemical material – similar to a CT scan or PET scan detecting a tumor in the human body – and lead to better medical diagnostics.

“This grant is an acknowledgement of Fisk and Wake Forest’s excellence and leadership in the field of radiation detection research,” said Fisk University Professor of Physics and Vice Provost Arnold Burger.

Researchers at Fisk and in national laboratories previously discovered that strontium iodide crystals doped with europium are able to detect and analyze radiation better than most other detection materials. Wake Forest researchers recently demonstrated the unexpectedly crucial role of specific parameters – electron and hole mobilities – needed to predict the best energy resolution of a given detector crystal.

Currently, expense is an issue because of the large quantities of the crystalline material ultimately needed for widely deployed screening devices. However, strontium iodide already performs much better than the most affordable detectors currently used, and the scientists are optimistic that with the right calculations and adjustments, crystals of the needed quality and size can be grown and produced affordably.

“Unexpected radiation situations are a fact of our modern world,” said Dr. Richard Williams, Professor of Physics at Wake Forest. “By improving radiation detection and diagnostics, our research will benefit medical advancement as well as international security.”

Featured

Featured Cybersecurity

Webinars

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening. 3

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles. 3

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3