An Emergency Network for Natural Disasters

Engineering researchers at the University of Arkansas are developing an emergency communications network that will maintain operation during natural disasters and provide critical warnings and geographic information to people affected by the disasters. The researchers are honing and testing the system now and expect to deploy a pilot network at the end of 2012.

The system, which the researchers call an emergency “mesh,” is self-sustainable and solar-powered, which means it would provide continuous, uninterrupted service even when the power grid or wireless communication systems are out of commission. Users would receive critical information on popular devices such as mobile phones, personal digital assistants, tablets and laptops.

“The ultimate goal of this project is to save human lives,” said Nilanjan Banerjee, assistant professor of computer science and computer engineering. “Deployment of this system could warn people to get out of harm’s way and could help emergency services personnel reach victims much faster. This last part is critically important because we know that many deaths occur in the minutes and hours after a disaster strikes. It is also important that the system communicates using popular, ubiquitous devices, because during these chaotic and highly stressful moments, people need to rely on something that is user-friendly and already familiar to them.”

The mesh can be thought of as a network of nodes that blanket a geographic area. Similar to servers, each solar-powered node contains data – geographic information – that can be downloaded to a user or communicated node-to-node, if necessary. The latter function is critically important in the event that a node or nodes fail due either to variability inherent in renewable energy or the likelihood of extreme environmental conditions in the aftermath of a natural disaster. If either or both happen, the mesh will automatically redistribute data to maintain service.

The geographic information will include a map, similar to the Google map service, that shows areas heavily affected by a disaster as well as routes around these areas.The system’s online demonstration displays a disaster area in red, while a green line shows an unobstructed or optimal route to an aid station or hospital.

Banerjee said several issues must be resolved before a practical and fully functioning system can be deployed. For sustainable operation on small solar panels, the nodes must operate on extremely low power yet still have enough power to send map-based information to users.

A hardware team led by Pat Parkerson, associate professor of computer science and computer engineering and co-principal investigator on the project, is developing and testing different hardware systems in an effort to strike this balance.

Also, a team led by Jack Cothren, associate professor of geosciences and director of the university’s Center for Advanced Spatial Technologies, is testing sophisticated GIS software that can function well on a device that has low power and limited resources. Another challenge is the geographical placement of nodes to ensure that optimal connectivity can be maintained regardless of topography.

To address all of these obstacles and test a combination of hardware and software, the researchers will deploy a 40-node mesh in downtown Fayetteville toward the end of 2012.

Banerjee said the technology could also apply to non-emergency scenarios, such as hiking in extreme wilderness areas or military operations in deserts or other remote locations.

The researchers received a $485,000 grant from the National Science Foundation to develop the system.

Featured

  • Just as Expected

    GSX produced a wonderful tradeshow earlier this week. Monday was surprisingly strong in the morning, and the afternoon wasn’t bad at all. That’s Monday’s results and asking attendees to travel on Sunday. Just a quick hint, no one wants to give up their weekend to travel and set up an exhibit booth. I’m just saying. Read Now

    • Industry Events
    • GSX
  • NOLA: The Crescent City

    Twenty years later we finds ourselves in New Orleans. Twenty years ago the aftermath of Hurricane Katrina forced exhibitors and attendees to look elsewhere for tradeshow floor space. Read Now

    • Industry Events
    • GSX
  • Nothing Artificial About this Intelligence

    I have been looking forward to this year’s GSX show in New Orleans, the Cresent City, or if you prefer The Big Easy. It seems like quite a while since we’ve been here. Twenty years ago, ASIS, as it was known then was literally washed out of the city by someone known as Katrina. It is a good thing to come back to NOLA. Read Now

  • From Monitors to Mission Control

    Security Operations Centers (SOC) were once defined by rows of static monitors, each displaying a single feed with operators quietly watching for issues. That model has become obsolete. Incidents evolve too quickly, data comes from multiple locations, and decisions must be made in seconds—not minutes. Read Now

  • New Gas Monkey Garage Venue Uses AI-Enhanced Video Technology

    Gas Monkey Garage, the automotive custom shop and entertainment brand founded by Richard Rawlings of Fast N’ Loud TV fame, has opened a vibrant new restaurant and bar in South Dakota, equipped with advanced, AI-enhanced video tech from IDIS Americas. Read Now

New Products

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.