The Value of an Urban Blast Tool

Thanks to lightning-fast software from the Department of Homeland Security’s Science and Technology Directorate (DHS S&T), if a truck bomb was discovered in Lower Manhattan we will now be able to predict the likely damage patterns in the surrounding areas, and prioritize the first responders’ activities long before the bomb’s acoustic shockwave ricocheted out at the speed of sound.

It’s called the Urban Blast Tool (UBT), and it stores a table of pre-calculated pressure loads that would course down Lower Manhattan’s canyons after a range of blasts, from a humble car bomb to a massive truck bomb packing many times the payload of the Oklahoma City bomb.

For decades, such predictions stumped the fastest computers. Now, answers can be generated on a humble PC. The Urban Blast Tool was developed for S&T by Weidlinger Associates of New York. Using a dead-accurate city model already known, the software determines the damage building by building. Lower Manhattan has already been modeled and, pending Congressional funding, it will be joined by Midtown Manhattan and then parts of Los Angeles, Chicago, Washington, and Boston.

Each street in an urban area is a labyrinth of crevices, corners, and contours, where the course of a shockwave never could run smooth. These irregular features make a tough challenge tougher. When a shockwave strikes a building, some of its energy is absorbed; the remainder glances off, as a reflection. More often than not, the reflection rejoins the shockwave, making the wave more focused…and more violent. Blocks away, buildings and people will feel the punch. At 10 blocks, the wave may be packing only 1 pound per square inch (1 psi). But that’s enough force to shatter windows and buckle walls.

After 9/11, scientists tried to model how a blast’s shockwave would travel down specific urban canyons: If a bomb this size is set off at that spot, will the tower over there progressively fail? Will its beams hang low? Will occupants be able to evacuate safely? Safe evacuation is the most immediate concern.

These questions went unanswered because blast simulations weren’t reliable. Beams, waves, and reflections trade energy in an intricate dance, especially within the bulls-eye of the blast, where pressures are extreme. Supercomputers running computational fluid dynamics can calculate the pressures as a shockwave radiates, but this can take weeks. In order to evacuate the most vulnerable buildings immediately, responders must size up the danger in minutes once a possible vehicle bomb is discovered.

In 2008, S&T began to look beyond the eye of the blast. After all, a blast would deliver much of its wrath blocks away and at lower pressures the force and effects could be calculated in mere seconds. Why not use computational fluid dynamics to pre-calculate the initial blast loads in fine detail, and store those results? Then, if an actual bomb explodes, responders and planners can call up these known values and crunch them through modeling software to warn responders of which structures may soon fail.

Lower Manhattan comprises some 100 city blocks and hundreds of tall buildings. Their makeup is no mystery: Google Earth and Google Streets know each streetscape, from every angle. Indeed, a vibrant community of Googlers has re-created a 3D model of each building, plaza, and park. Using these models as building blocks, Weidlinger built a virtual replica, fashioned from 1s and 0s.

To give the shockwave calculations a running start, Weidlinger drew on physics-based analytical software codes the company had developed for the Department of Defense (DOD). American soldiers in Baghdad were facing truck bombs daily. Earlier, to better understand that threat, DOD had conducted tests for which Weidlinger had modeled blast pressures and structural damage. The company applied this experience to the Urban Blast Tool.

 The first code for the model predicts a blast’s shock physics in all three dimensions, from its opening thunder through its closing whimper. Weidlinger determined how a blast’s force would rise and decay as the wall of heated air fanned out, confronting specific buildings in its path.

A second code analyzes a building’s strength and predicts distant damage, right down to the floor joists. Using codes, a blast wave propagation and structural response could be modeled for a typical sample of the area buildings, over a range of blast threats. Together, these models form a library—a cheat sheet—that makes quick work of calculating downstream damage. And it’s done in seconds.

Since the software’s interface was built on Google Earth, it has a familiar look and feel as demonstrated here. That familiarity can be a life-saver after a bomb explodes, and responders, racing to the scene, may have just minutes to determine which buildings may tumble.

With the Urban Blast Tool software comes another important piece of software: the Emergency Evacuation, Rescue and Recovery Model (EERR). This companion software can evaluate the odds that a column will fail, and its emergency systems suffer damage, no matter whether a building is made of steel frames, reinforced-concrete frames, or flat plates.

The Urban Blast Tool and EERR are the crown jewels of a suite of S&T-funded applications designed to help cities protect infrastructure from blasts.

Says architect Mila Kennett, the S&T program manager who oversaw the software’s development: “We will offer the entire suite at no charge to emergency planners, DHS agencies, and credentialed architects, engineers, and building owners. Using our new software, they’ll be able to identify safer evacuation routes, design more-blast resistant buildings, and fortify older buildings.”

Like other S&T-funded technologies, the Urban Blast Tool is merely one weapon in a responder’s toolkit. But on the urban battlefield, where threats require a layered defense, each layer counts.

“We can’t thwart every bomb,” says Kennett, “But here at S&T, we always looking for innovative solutions to protect more lives.”

Featured

  • The Key to Wellbeing in the Office

    A few years ago, all we saw in the news was the ‘great resignation.’ Now we have another ‘great’ to deal with. According to CBRE, 2023 was the start of the ‘great return’ as office workers returned to their normal offices after working from home. The data shows that two-thirds of all U.S office buildings were more than 90% leased as of Q2 2023. Read Now

  • Failed Cybersecurity Controls Costing U.S. Businesses $30 Billion Yearly

    Panaseer recently released ControlWatch and the Continuous Controls Battle: Panaseer 2025 Security Leaders Report examining the cost of cybersecurity control failures and the impact of growing personal liability for security failings on security leaders. The report analyzes the findings of a survey of 400 security decision makers (SDMs) across the US and UK. It shows that security leaders feel under increasing pressure to provide assurances around cybersecurity, exposing them to greater personal risk – yet many lack the data and resources to accurately report and close cybersecurity gaps. Read Now

  • The Business Case for Video Analytics: Understanding the Real ROI

    For security professionals who may be hesitant to invest in video analytics, now's the time to reconsider. In a newly released Omdia report commissioned by BriefCam (now Milestone Systems), the research firm uncovered a compelling story: more than 85% of North American and European organizations that use video analytics achieve a return on investment within just one year. The study, which surveyed 140 end users across multiple industries, demonstrates that security technology is no longer just for security — it's a cross-organizational tool that delivers measurable business value far beyond traditional safety applications. Read Now

  • Survey: 54% of Organizations Cite Technical Debt as Top Hurdle to Identity System Modernization

    Modernizing identity systems is proving difficult for organizations due to two key challenges: decades of accumulated Identity and Access Management (IAM) technical debt and the complexity of managing access across multiple identity providers (IDPs). These findings come from the new Strata Identity-commissioned report, State of Multi-Cloud Identity: Insights and Trends for 2025. The report, based on survey data from the Cloud Security Alliance (CSA), highlights trends and challenges in securing cloud environments. The CSA is the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment. Read Now

Featured Cybersecurity

Webinars

New Products

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings. 3

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file. 3

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening. 3