The Value of an Urban Blast Tool

Thanks to lightning-fast software from the Department of Homeland Security’s Science and Technology Directorate (DHS S&T), if a truck bomb was discovered in Lower Manhattan we will now be able to predict the likely damage patterns in the surrounding areas, and prioritize the first responders’ activities long before the bomb’s acoustic shockwave ricocheted out at the speed of sound.

It’s called the Urban Blast Tool (UBT), and it stores a table of pre-calculated pressure loads that would course down Lower Manhattan’s canyons after a range of blasts, from a humble car bomb to a massive truck bomb packing many times the payload of the Oklahoma City bomb.

For decades, such predictions stumped the fastest computers. Now, answers can be generated on a humble PC. The Urban Blast Tool was developed for S&T by Weidlinger Associates of New York. Using a dead-accurate city model already known, the software determines the damage building by building. Lower Manhattan has already been modeled and, pending Congressional funding, it will be joined by Midtown Manhattan and then parts of Los Angeles, Chicago, Washington, and Boston.

Each street in an urban area is a labyrinth of crevices, corners, and contours, where the course of a shockwave never could run smooth. These irregular features make a tough challenge tougher. When a shockwave strikes a building, some of its energy is absorbed; the remainder glances off, as a reflection. More often than not, the reflection rejoins the shockwave, making the wave more focused…and more violent. Blocks away, buildings and people will feel the punch. At 10 blocks, the wave may be packing only 1 pound per square inch (1 psi). But that’s enough force to shatter windows and buckle walls.

After 9/11, scientists tried to model how a blast’s shockwave would travel down specific urban canyons: If a bomb this size is set off at that spot, will the tower over there progressively fail? Will its beams hang low? Will occupants be able to evacuate safely? Safe evacuation is the most immediate concern.

These questions went unanswered because blast simulations weren’t reliable. Beams, waves, and reflections trade energy in an intricate dance, especially within the bulls-eye of the blast, where pressures are extreme. Supercomputers running computational fluid dynamics can calculate the pressures as a shockwave radiates, but this can take weeks. In order to evacuate the most vulnerable buildings immediately, responders must size up the danger in minutes once a possible vehicle bomb is discovered.

In 2008, S&T began to look beyond the eye of the blast. After all, a blast would deliver much of its wrath blocks away and at lower pressures the force and effects could be calculated in mere seconds. Why not use computational fluid dynamics to pre-calculate the initial blast loads in fine detail, and store those results? Then, if an actual bomb explodes, responders and planners can call up these known values and crunch them through modeling software to warn responders of which structures may soon fail.

Lower Manhattan comprises some 100 city blocks and hundreds of tall buildings. Their makeup is no mystery: Google Earth and Google Streets know each streetscape, from every angle. Indeed, a vibrant community of Googlers has re-created a 3D model of each building, plaza, and park. Using these models as building blocks, Weidlinger built a virtual replica, fashioned from 1s and 0s.

To give the shockwave calculations a running start, Weidlinger drew on physics-based analytical software codes the company had developed for the Department of Defense (DOD). American soldiers in Baghdad were facing truck bombs daily. Earlier, to better understand that threat, DOD had conducted tests for which Weidlinger had modeled blast pressures and structural damage. The company applied this experience to the Urban Blast Tool.

 The first code for the model predicts a blast’s shock physics in all three dimensions, from its opening thunder through its closing whimper. Weidlinger determined how a blast’s force would rise and decay as the wall of heated air fanned out, confronting specific buildings in its path.

A second code analyzes a building’s strength and predicts distant damage, right down to the floor joists. Using codes, a blast wave propagation and structural response could be modeled for a typical sample of the area buildings, over a range of blast threats. Together, these models form a library—a cheat sheet—that makes quick work of calculating downstream damage. And it’s done in seconds.

Since the software’s interface was built on Google Earth, it has a familiar look and feel as demonstrated here. That familiarity can be a life-saver after a bomb explodes, and responders, racing to the scene, may have just minutes to determine which buildings may tumble.

With the Urban Blast Tool software comes another important piece of software: the Emergency Evacuation, Rescue and Recovery Model (EERR). This companion software can evaluate the odds that a column will fail, and its emergency systems suffer damage, no matter whether a building is made of steel frames, reinforced-concrete frames, or flat plates.

The Urban Blast Tool and EERR are the crown jewels of a suite of S&T-funded applications designed to help cities protect infrastructure from blasts.

Says architect Mila Kennett, the S&T program manager who oversaw the software’s development: “We will offer the entire suite at no charge to emergency planners, DHS agencies, and credentialed architects, engineers, and building owners. Using our new software, they’ll be able to identify safer evacuation routes, design more-blast resistant buildings, and fortify older buildings.”

Like other S&T-funded technologies, the Urban Blast Tool is merely one weapon in a responder’s toolkit. But on the urban battlefield, where threats require a layered defense, each layer counts.

“We can’t thwart every bomb,” says Kennett, “But here at S&T, we always looking for innovative solutions to protect more lives.”

Featured

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

New Products

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises.

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.