Eyes Wide Open

Thermal imaging helps execute port security

The Port of Portland services more than 800 vessel calls each year, accounting for more than 14 million tons of ocean-going cargo. A complex of four marine terminals, the port processes a diverse mix of cargo including bulk, breakbulk, containers and automobiles. Terminal operations continue night and day all year round, so the security infrastructure needs to be effective regardless of weather or lighting conditions.

To meet the ever-changing demands and conditions, port officials have spent the last two years designing and implementing an impressive security upgrade, funded in part through a grant from the Department of Homeland Security. These improvements focused on Terminals 2, 4, and 6, multipurpose and multi-modal facilities that need to control access from pedestrian, vehicle, rail, and sea routes. The port hired CH2M Hill as the consulting engineer firm for this comprehensive security upgrade.

Covering 280 acres, Terminal 4 has seven berths that handle vehicle, bulk, and liquid bulk cargos. Terminal 6 is a deep draft container terminal that spreads over 380 acres; it also services vehicles and break bulk cargos. Each terminal can process 1,000 trucks a day, in addition to all of its normal rail traffic

Some of the new security systems focus on the cargo and its containers. Examples include an Optical Character Recognition system, which scans shipping container markings and matches these markings to a truck’s license plate, and Radiation Portal Monitors, which scan containers for abnormal levels of radiation that may betray the presence of a dirty bomb.

Still other parts of the port’s security upgrade involved the terminal’s physical security. These included the installation of improved guardhouses, reinforced fencing, improved access control through the implementation of the nationwide Transportation Worker Identification Credential (TWIC) system, and the integration of Forward Looking Infrared (FLIR) thermal imaging cameras.

It’s not unheard of for those responsible for acquisitions in municipalities— state, local, and federal—to hesitate when they see the cost of thermal security cameras. Even though they are available for less than $3,000, some managers see thermal cameras as a significant investment when compared to the cost of run-ofthe- mill CCTV cameras.

What they’re not taking into account is the thermal camera’s ability to act as a force multiplier, allowing law enforcement officers of all stripes to react more effectively— responding to greater numbers of crimes with fewer officers, and using agency resources more efficiently.

Thermal security cameras let you see what your eyes can’t: invisible heat radiation emitted by all objects regardless of lighting conditions. Thermal cameras detect the minute temperature differences between objects and turn them into video that you can watch on almost any TV monitor.

Because they see heat, not light, thermal cameras are effective law enforcement tools in any environment. They can easily detect intruders and other potential hazards to the security of people and infrastructure in any weather, as well as all day and all night.

CCTV cameras and human eyes both make images from reflected light. This is light energy that hits something, bounces off it, is received by a detector, and then turned into an image.

Cameras that create images based on visible light have the advantage of creating images that are familiar and easy to interpret. Unfortunately, the ability of a given detector—be it in an eyeball or a camera—to create these images relates directly to the amount of light available.

At night, for instance, when there isn’t much visible light to work with, people are limited to starlight, moonlight and artificial lights to help see. Simply but, if there isn’t enough light, people can’t see.

Another limitation of cameras that create images from reflected visible light is contrast. Like the human eye, these cameras create better images if the object you are looking for has lots of contrast compared to its background. If it doesn’t, you won’t see it. That’s how camouflage works; it’s essentially a way of decreasing the visible contrast between an object and its surroundings.

Thermal cameras don’t suffer from the basic limitations of visible-light imaging. First, thermal cameras make pictures from heat, not light, having nothing whatsoever to do with reflected light energy. They see the heat given off by everything under the sun. Everything you encounter in daily life creates heat energy, called a “heat signature,” that a thermal imager can see.

Not only does everything have a heat signature, but these heat signatures create their own contrast, so the thermal energy seen by thermal cameras generally creates a better image at night than during the day. They work just fine during the day—as long as there is the tiniest bit of temperature contrast between an object and its background, you can see it—but they work best at night. And nighttime, as we all know, is when homeland security and other law enforcement professionals need the most help to see.

An important tactical distinction to understand is that security operators, law enforcement officers and federal agents aren’t using thermal cameras to identify suspected criminals and terrorists. They use thermal cameras to detect the presence of people in restricted or suspect areas, assess the tactical situation and respond accordingly. Thermal cameras are the best tools officers and agents can use to know how many bad guys they’re facing, and consequently how many good guys should respond to meet the threat, because people cannot hide their heat.

Thermal security cameras also act as a force multiplier, allowing law enforcement and security operators to work hand in hand and react more effectively, responding to threats with the appropriate force and using agency resources efficiently.

For instance, thermal security cameras have been widely adopted as the imaging technology of choice to answer federal regulations requiring continuous 24-hour surveillance, observation, and monitoring of the perimeter and control areas at critical infrastructure facilities such as nuclear plants, energy production facilities, and ports.

They have become an integral part of the delay, detect and respond strategy— the increased detection range giving security forces more time to respond, contain and neutralize adversaries before they can access or damage nuclear materials or facilities. Thermal cameras output IP as well as standard RS-170 video signals, so it is easy to transmit via wireless networks while also working easily with video analytics software.

By coupling their FLIR cameras with a video analytics package, the Port of Portland created a virtual perimeter that helps its security teams detect movement in areas that are otherwise a practical impossibility to secure physically. Most notably are the rail access points, ship berths and other waterfront areas.

Trains come into the terminal areas at all hours of night and day, so fencing terminals or the areas around them would be impractical, expensive and dangerous. This is an obvious vulnerability, because anyone could walk down the tracks and be inside port property before the security team knew about it. With the FLIR thermal cameras, however, port security can monitor rail access points, 24 hours a day and receive alarms whenever anyone crosses onto port property.

Waterfront areas are similarly impractical to secure physically. Fences aren’t a solution because of the allhours access needed by ships, equipment and longshoremen alike, and lighting would be prohibitively expensive. Like rail access points, thermal cameras can effectively monitor large waterfront areas—Terminal 6 is almost three miles long— and send alarms to the security operations guardhouse for evaluation and response.

The Port of Portland’s thermal cameras, operating alongside daylight and lowlight video cameras, provide an overlapping mix of video coverage. Fixed thermal cameras of 19mm, 35mm, 50mm and 100mm focal lengths surveil stationary areas and choke points.

While daylight and lowlight cameras have definite advantages when lighting conditions allow their use, thermal cameras have proven their worth at night.

“Lowlight cameras just aren’t there, compared to thermal, which gives you a bold image,” said Forrest Gist, a CH2M Hill security project manager who worked on the Port of Portland security upgrade.

Thermal security cameras change the way business is done in the security profession. They don’t need light, they work 24/7, and they see potential intruders from miles away, instead of just feet. Until low-cost FLIR thermal cameras came about, they were not an option for most installations simply because of their cost. But today thermal cameras are affordable, and security professionals around the world, including at the Port of Portland, are convinced of their necessity.

This article originally appeared in the March 2012 issue of Security Today.

Featured

  • The Key to Wellbeing in the Office

    A few years ago, all we saw in the news was the ‘great resignation.’ Now we have another ‘great’ to deal with. According to CBRE, 2023 was the start of the ‘great return’ as office workers returned to their normal offices after working from home. The data shows that two-thirds of all U.S office buildings were more than 90% leased as of Q2 2023. Read Now

  • Failed Cybersecurity Controls Costing U.S. Businesses $30 Billion Yearly

    Panaseer recently released ControlWatch and the Continuous Controls Battle: Panaseer 2025 Security Leaders Report examining the cost of cybersecurity control failures and the impact of growing personal liability for security failings on security leaders. The report analyzes the findings of a survey of 400 security decision makers (SDMs) across the US and UK. It shows that security leaders feel under increasing pressure to provide assurances around cybersecurity, exposing them to greater personal risk – yet many lack the data and resources to accurately report and close cybersecurity gaps. Read Now

  • The Business Case for Video Analytics: Understanding the Real ROI

    For security professionals who may be hesitant to invest in video analytics, now's the time to reconsider. In a newly released Omdia report commissioned by BriefCam (now Milestone Systems), the research firm uncovered a compelling story: more than 85% of North American and European organizations that use video analytics achieve a return on investment within just one year. The study, which surveyed 140 end users across multiple industries, demonstrates that security technology is no longer just for security — it's a cross-organizational tool that delivers measurable business value far beyond traditional safety applications. Read Now

  • Survey: 54% of Organizations Cite Technical Debt as Top Hurdle to Identity System Modernization

    Modernizing identity systems is proving difficult for organizations due to two key challenges: decades of accumulated Identity and Access Management (IAM) technical debt and the complexity of managing access across multiple identity providers (IDPs). These findings come from the new Strata Identity-commissioned report, State of Multi-Cloud Identity: Insights and Trends for 2025. The report, based on survey data from the Cloud Security Alliance (CSA), highlights trends and challenges in securing cloud environments. The CSA is the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment. Read Now

Featured Cybersecurity

Webinars

New Products

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings. 3

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file. 3

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening. 3