Upgrading To A New Era

Keeping the ever-increasing demand for anytime, anywhere data under control

The recent eruption of mobile applications coupled with increasing IP-based data traffic on mobile devices is fueling the uptake of 4G technologies and driving the migration to faster data rates. In order to allow an all-IP-based services platform, service providers are upgrading existing networks and migration strategies. Both handset vendors and carriers are busy rolling out application portals in order to differentiate their offerings and provide better monetization and ARPU. The increasing trend for “anywhere, anytime” data technology is pushed by user mobility and subscriber need.

The move to mobile connectivity and mobile broadband, and more overall data traffic, is powering this expansion. Subscribers are dictating what applications they want to use and where they want to use them. This is pushing operators to move to an all-IP core by reducing network complexity and lowering costs.

With this much network transformation, the migration won’t happen overnight. Network operators still need to support a hybrid network for the foreseeable future, interconnecting next-generation systems and devices with the various types of existing platforms. The future of the network is becoming more complex, and the journey toward a converged all-IP network brings a whole new set of network performance and management guidelines to be implemented by IT organizations. Real-time network troubleshooting, monitoring and provisioning must be implemented strategically, as they are driven by the ever-important need to maintain and manage the subscriber experience.

Real-time monitoring of network traffic has proven to be particularly important for analyzing and diagnosing network performance and, consequently, the subscriber’s quality of experience (QoE).

Legacy Tools Fall Short of Real-Time Monitoring Needs

Performance and complexity problems are only made worse by fragmented monitoring approaches. The constant push for more efficient connectivity is leaving traditional approaches toward network monitoring incapable of managing network components on service provider and enterprise infrastructures. The accumulation of outdated network monitoring components coupled with the growing complexity of data on the network is causing several major problems.

Traditionally, placing a host of tools into the network was the solution to improving visibility of network performance. While this strategy does solve some problems, it introduces others. The inability to access a particular point in a network with multiple tools is often considered the biggest challenge IT managers face. This limitation, combined with the type of overhead management used in legacy monitoring schemes, creates a network “blind spot” and makes troubleshooting inefficient because there often are different sets of tools scattered across the network in different physical locations, each with individual management software that is inoperable with the software of other vendors.

Monitoring costs become increasingly expensive as network management becomes more inefficient and network engineers have limited accessibility to certain points in the network yet still have to manage an immense overflow of data. Reduced ROI and increased costs from the lack of fast and efficient troubleshooting is impacting revenues across the board—and adding performance and complexity problems.

Smarter Solutions: The Economics of Network Intelligence Optimization

Network operators—especially those in the telecom, enterprise or government industries—must carefully consider the price-performance, agility, diversity and intelligent capabilities of a traffic capture solution before making a decision. They must develop a complete and forward-looking strategy for network monitoring and management. There are a rising number of macro trends that, depending on future requirements, network operators should be mindful of when determining their network monitoring needs; technology development, “flattening the network” and purchasing economics are examples.

The continued expansion of IP only looks to accelerate the need to displace legacy systems with a next-generation network. With the network “flattening,” more distributed IP components in the network will be created, thus effectively generating more potential points of failure. A broader range of IP services will be rolled out as a result, further increasing the complexity of the network. Added complexity creates more opportunities for points of monitoring; the monitoring infrastructure should be “flat” and flexible across the whole network.

The Network Intelligence Optimization framework is laying the foundation for a smarter network monitoring solution. In order to withstand the increase in speed and complexities, the traffic-capture layer must continue to be utilized in the hardware because it is necessary to have a deeper awareness of packets and applications, along with a more dynamic handling of them.

With the need to improve service delivery while having tighter budget control, it is no surprise that network managers must now do more with less. However, the network monitoring optimization framework enables an organization to shift from a high initial CAPEX business model to a lower and variable CAPEX model when looking at the network monitoring component of the budget.

Network managers can do more in other areas such as network forensics, lawful intercepts and behavioral analysis now that there is less to worry about. With managed service providers (MSPs) having become mainstream, and primarily focused on monetization of QoS/QoE rather than on monitoring network elements and packets, the layered approach to network monitoring is essential to enabling the business model and differentiation in such network environments.

This article originally appeared in the March 2012 issue of Security Today.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction. 3

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame. 3