Internet Censosrship Revealed Through Haze of Malware Pollution

On a January evening in 2011, Egypt – with a population of 80 million, including 23 million Internet users – vanished from cyberspace after its government ordered an Internet blackout amidst anti-government protests that led to the ouster of Egyptian President Hosni Mubarak. The following month, the Libyan government, also under siege, imposed an Internet “curfew” before completely cutting off access for almost four days.

To help explain exactly how these governments disrupted the Internet, a team of scientists led by the Cooperative Association for Internet Data Analysis (CAIDA) at the University of California, San Diego conducted an analysis based largely on the drop in a specific subset of observable Internet traffic that is a residual product of malware. Many types of malicious software or network activity generate unsolicited traffic in attempting to compromise or infect vulnerable machines. This traffic “pollution” is commonly referred to as Internet background radiation (IBR) and is ubiquitously observable on most publicly accessible Internet links.

The analysis marks the first time that this malware-generated traffic pollution was used to analyze Internet censorship and/or network outages, and the researchers believe this novel methodology could be adopted on a wider scale to create an automated early warning system to help detect such Internet reachability problems in the future.

“We actually used something that’s generally regarded as bad – traffic pollution due to malware – for a beneficial purpose, specifically to improve our understanding of geopolitical censorship behavior,” said K.C. Claffy, CAIDA’s founder and principal investigator for the research, funded by the National Science Foundation (NSF) and the Department of Homeland Security (DHS).

Added Emile Aben, part of the research team and a system architect with the Reseaux IP Europeens Network Coordination Centre (RIPE NCC), an independent organization based in The Netherlands that supports the infrastructure of the Internet through technical coordination: “We believe that research such as this has security relevance and implications for every nation in the world.”

Specifically, the research team – including scientists in Italy and The Netherlands – used UC San Diego’s Network Telescope, which consists of a globally routed segment of Internet address space that carries almost no legitimate Internet traffic. Also known as a ‘darknet’ because this subset of addresses does not have any devices assigned to them, the UC San Diego network telescope collects what could be considered “garbage” of the Internet, such as traffic due to mistyped IP (Internet protocol) addresses, malicious scanning of address space by hackers looking for vulnerable targets, backscatter from random source DoS (denial of service) attacks, and the automated spread of malicious software, including botnet and worm activity. The team also used other multiple sources of large-scale data available to the academic community, such as global routing signaling information.

“Using a combination of this data allowed us to narrow down which forms of Internet access disruption were implemented in a given region over time, but the malware-induced traffic helped us uncover things that the other data did not reveal,” said Alberto Dainotti, who recently joined CAIDA from the University of Napoli Federico II in Naples, Italy, and served as lead author of the study, called Analysis of Country-wide Internet Outages Caused by Censorship. “Among other insights, we detected what we believe were the Gaddafi government's attempts to test a firewall to conduct higher precision host-based blocking while they were executing the coarser approach of router-based disconnection.”

“On a larger scale, we were able to analyze how regimes go about bringing down an entire country’s Internet infrastructure,” said Aben.

CAIDA has also been exploring the impact of geophysically disruptive events, such as major earthquakes or other natural disasters, on Internet connectivity. Another recent study was described in a study called Extracting Benefit From Harm: Using Malware Pollution to Analyze Political and Geophysical Events, published in the January 2012 issue of the ACM SIGCOMM Computer Communication Review. In this study, Dainotti, Claffy, and Aben, along with Roman Amman from the Auckland University of Technology, in Auckland, New Zealand, showed how IBR traffic revealed aspects of not only the Egypt and Libya political uprisings, but also during the powerful earthquakes that struck Christchurch, New Zealand, in February 2011, and Tohoku, Japan one month later – the most powerful earthquake to ever hit that nation.

Dainotti acknowledges that this research is still preliminary, and the team has not explored any automated early warning functionality for natural disasters. But the earthquake study above explored metrics for effectively and efficiently gauging the impact of disasters on Internet infrastructure, based on the analysis of IBR activity from the affected region or regions.

The metric they experimented with to analyze the earthquakes captured a level-shift in the number of IP addresses reaching the observation point. It clearly showed that the Tohoku earthquake had much higher impact on network infrastructure than the Christchurch earthquake (partly because there is much higher population density and thus Internet infrastructure density in Japan). The researchers also were able to compare the geographic extent, or radius, of the damage, and approximate restoration times based on when IBR traffic was again observable by the UC San Diego network telescope.

“Although we have only scratched the surface, we are convinced that IBR traffic is an important building block for comprehensive monitoring, analysis, and possibly even detection of events unrelated to the IBR itself,” said Claffy, noting that CAIDA plans further study in this area. “We hope our methodology will be used to detect outages or similar macroscopically disruptive events in other geographic or topological regions.”

Additional researchers in the Analysis of Country-wide Internet Outages Caused by Censorship paper included Marco Chiesa and Claudio Squarcella (Roma Tre University, Rome, Italy); and Michele Russo and Antonio Pescapé (University of Napoli Federico II, Naples, Italy.)

Featured

  • Security Industry Embraces Mobile Credentials, Biometrics and AI, New Trends Report From HID Finds

    As organizations navigate an increasingly complex threat landscape, security leaders are making strategic shifts toward unified platforms and emerging technologies, according to the newly released 2025 State of Security and Identity Report from HID. The comprehensive study gathered responses from 1,800 partners, end users, and security and IT personnel worldwide, and reveals a significant transformation in how businesses are approaching security, with mobile credentials and artificial intelligence emerging as key drivers of innovation. Read Now

  • UK’s NHS Hospital Transforms Security with Edge-processing Camera System

    i-PRO Co., Ltd.,(formerly Panasonic Security), a manufacturer of edge computing cameras for security and public safety, recently announced that a leading teaching hospital in Northeast England, has enhanced its security infrastructure with i-PRO X-Series cameras integrated with Milestone’s XProtect Video Management Software (VMS). Read Now

  • Gun Violence Report Finds Retail Spaces, K-12 Schools Most Targeted

    ZeroEyes, the creators of the only AI-based gun detection video analytics platform that holds the U.S. Department of Homeland Security SAFETY Act Designation, today announced the release of its annual Gun Violence Report, offering a deep dive into the landscape of gun-related incidents across the United States. This analysis extends beyond mass fatality events, providing a more nuanced understanding of when, where, and why shootings occur. Read Now

  • Agentic AI Will Revolutionize Cybercrime in 2025 According to New Report

    Malwarebytes, a provider in real-time cyber protection, recently released its 2025 State of Malware report, which reveals insight into the emergence of agentic artificial intelligence (AI), plus the year’s most prominent threats and cybercrime tactics. The report details a significant uptick in the number of known ransomware attacks, the total value of ransoms paid in 2024, and how IT teams can address them. Read Now

New Products

  • Hanwha QNO-7012R

    Hanwha QNO-7012R

    The Q Series cameras are equipped with an Open Platform chipset for easy and seamless integration with third-party systems and solutions, and analog video output (CVBS) support for easy camera positioning during installation. A suite of on-board intelligent video analytics covers tampering, directional/virtual line detection, defocus detection, enter/exit, and motion detection.

  • ComNet CNGE6FX2TX4PoE

    The ComNet cost-efficient CNGE6FX2TX4PoE is a six-port switch that offers four Gbps TX ports that support the IEEE802.3at standard and provide up to 30 watts of PoE to PDs. It also has a dedicated FX/TX combination port as well as a single FX SFP to act as an additional port or an uplink port, giving the user additional options in managing network traffic. The CNGE6FX2TX4PoE is designed for use in unconditioned environments and typically used in perimeter surveillance.

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.