Supporting PIV I Cards

How to determine if your physical access control system supports the solution

When your physical access control system (PACS) manufacturer tells you its system supports PIV-I “end-to-end,” you might want to do some additional digging to make sure you both agree as to what that really means. Legacy PACS designed for proximity cards (or even PIV cards) are unlikely to support PIV-I cards without specific upgrades for handling 128-bit identifiers. Just because a PACS supports PIV cards doesn’t mean it supports PIV-I cards. In a plug-and-play world, it may be your job to ensure that each component is capable of PIV-I.

PIV Card Identifiers

The identifier on a PIV card is the 32-digit Federal Agency Smart Credential Number (or FASC-N). The FASC-N, found in the card’s CHUID container, is a “smart number” consisting of nine fields.

The first five FASC-N fields—16 binary coded digits—are sufficient to uniquely identify every federally issued credential. That means that physical access control systems may safely use the first 16 digits of the FASC-N as the card identifier without concern for duplicates. The largest possible 16-digit identifier would therefore be 9,999,999,999,999,999, which happens to require 54 bits. Most access control panels cannot store a value as large as this as a single number. Instead, they employ schemes that split the value into two or three logical parts. A common method is to concatenate the agency code, system code and credential number (14 digits), forming one number, and the credential series code and individual credential issue (2 digits), forming another number. Another method is to combine the agency code and system code into a number represented as the traditional “facility code” and store the credential number as the traditional “card number.”

This is often done to avoid updating panel firmware and head-end software to support larger identifiers.

PIV-I Card Identifiers

PIV-I cards are intended for non-federal issuers. The number of organizations that could potentially deploy it is so large that the agency code-system code-credential number method used by PIV cards would not work. Therefore, with PIV-I, the FASC-N can no longer be used as the card identifier. In fact, the first 14 digits of the FASC-N on a PIV-I card are all 9s.

Therefore, if a system can read only a partial FASC-N, all PIV-I cards would appear the same.

PIV-I credentials must use a different numbering system called the globally unique identifier (GUID), which also is found in the CHUID container. The construction of the GUID has some important properties that impact physical access control systems. A GUID is generated in a way that ensures uniqueness across the planet, even if the machine generating it is “off the grid.” The GUID is always 128 bits, which is more than double the size of the 16-digit truncated FASC-N.

The Reader

The reader must be able to recognize that the credential is a PIV-I card. The correct way for the reader to do this is to read the CHUID and check the first 14 digits of the FASC-N. If it is not all 9s, it then outputs the FASC-N. If it is all 9s, it outputs the GUID. The panel must be able to accept cards of both formats—FASC-N or GUID.

The Panel

PIV-I credentials require the control panel and the head end to store larger values for identifiers. These values can still be broken into smaller pieces for ease of storage, but because the GUID is a series of 128 bits rather than a string of binary coded digits, the panel must employ a different method for splitting a GUID received from a reader.

Splitting must be done by bits, not digits. When a PIV-I GUID arrives on the reader port, the panel must split the GUID and compare it with pieces of GUIDs previously received from the head end.

The Head End

Because head-end computers usually have larger memory capacities and more sophisticated database engines, the PIV-I GUID can often be stored as a single 128-bit value. In fact, Microsoft SQL Server supports the GUID as a data type. Regardless, head-end software must be able to accept a GUID as card identifier from the enroller and must be able to send the complete GUID to the panel. The panel must be capable of storing the GUID in a way that it can quickly be compared with the GUID arriving on a reader port.

Remember, there are many things to keep in mind when determining if your PACS supports PIV-I “end-to-end” and whether your access control system truly has the capability to support PIV-I cards.

This article originally appeared in the June 2012 issue of Security Today.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3