Frankenstein Programmers Test a Cybersecurity Monster

In order to catch a thief, you have to think like one.

UT Dallas computer scientists are trying to stay one step ahead of cyber attackers by creating their own monster. Their monster can cloak itself as it steals and reconfigures information in a computer program.

In part because of the potentially destructive nature of their technology, creators have named this software system Frankenstein, after the monster-creating scientist in author Mary Shelley’s novel, Frankenstein; or The Modern Prometheus.

“Shelley’s story is an example of a horror that can result from science, and similarly, we intend our creation as a warning that we need better detections for these types of intrusions,” said Dr. Kevin Hamlen, associate professor of computer science at UT Dallas who created the software, along with his doctoral student Vishwath Mohan. “Criminals may already know how to create this kind of software, so we examined the science behind the danger this represents, in hopes of creating counter measures.”

Frankenstein is not a computer virus, which is a program that can multiply and take over other machines. But, it could be used in cyber warfare to provide cover for a virus or another type of malware, or malicious software.

In order to avoid antivirus software, malware typically mutates every time it copies itself onto another machine. Antivirus software figures out the pattern of change and continues to scan for sequences of code that are known to be suspicious.

Frankenstein evades this scanning mechanism. It takes code from programs already on a computer and repurposes it, stringing it together to accomplish the malware’s malicious task with new instructions.

“We wanted to build something that learns as it propagates,” Hamlen said. “Frankenstein takes from what is already there and reinvents itself.”

“Just as Shelley’s monster was stitched from body parts, our Frankenstein also stitches software from original program parts, so no red flags are raised,” he said. “It looks completely different, but its code is consistent with something normal.”

Hamlen said Frankenstein could be used to aid government counter terrorism efforts by providing cover for infiltration of terrorist computer networks. Hamlen is part of the Cyber Security Research and Education Center in the Erik Jonsson School of Engineering and Computer Science.

The UT Dallas research is the first published example describing this type of stealth technology, Hamlen said.

“As a proof-of-concept, we tested Frankenstein on some simple algorithms that are completely benign,” Hamlen said. “We did not create damage to anyone’s systems.”

The next step, Hamlen said, is to create more complex versions of the software.

Frankenstein was described in a paper published online in conjunction with a presentation at a recent USENIX Workshop on Offensive Technologies.

The research was supported by the National Science Foundation and Air Force Office of Scientific Research.

Featured

  • Tradeshow Work Can Be Fun

    While at ISC West last week, I ran into numerous friends and associates all of which was a pleasant experience. The first question always seemed to be, “How many does this make for you?” Read Now

    • Industry Events
    • ISC West
  • New Report Says 1 in 5 SMBs Would Be Forced to Shutter After Successful Cyberattack

    Small and medium-sized businesses (SMBs) play a crucial role in the U.S. economy, making up 99.9% of all businesses and contributing to half of the nation's GDP. However, these vital economic growth drivers face an escalating threat—cyberattacks that could put them out of business. Read Now

  • The Yellow Brick Road

    The road to and throughout Wednesday's and Thursday's ISC West was crowded but it was amazing. Read Now

    • Industry Events
    • ISC West
  • An Inside Look From Napco at ISC West

    Get a look into the excitement at ISC West 2025 from Napco. Hear from some of their top-tech executives live from the show floor. Read Now

    • Industry Events
    • ISC West
  • Upping the Ante

    I am not a betting man in terms of cards, dice, blackjack or that wheel with the black marble racing around the circumference of a spinning wheel, but I would bet on the success of ISC West this year. Read Now

    • Industry Events
    • ISC West

New Products

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.