Building Ultra-Low Power Wireless Networks

Engineering researchers at the University of Arkansas have received funding from the National Science Foundation to create distortion-tolerant communications for wireless networks that use very little power. The research will improve wireless sensors deployed in remote areas where these systems must rely on batteries or energy-harvesting devices for power.

“Ultra-low power consumption is one of the most formidable challenges faced by the next generation of wireless sensing systems,” said Jingxian Wu, assistant professor of electrical engineering. “These systems will need to operate without interruption for multiple years and with extremely limited battery capacity or limited ability to scavenge energy from other devices. This is why the NSF was interested in our research.”

Ultra-low power wireless communication devices are powered by batteries or energy harvesting devices such as solar panels. The lower the power consumption, the longer the device can operate without recharging. This is especially important for wireless sensor networks, where the sensors are often deployed in remote areas to monitor items such as water quality, the health of animals and the condition of tunnels, buildings and bridges. These networks are expected to operate without interruption over extremely long periods of time without changing batteries. Therefore, it is important to reduce the power consumption so the device can operate for long periods without human intervention.

During data transfer, distortion occurs if the received message is different from the transmitted message. In digital communication systems, the data are transmitted in the form of zeroes and ones. Due to noise and interference during the transmission process, the receiver might receive a zero when a one was transmitted or vice versa. Some critical data or software, such as computer games, requires distortion-free communication. With these systems, any distortion might make the software nonoperational. Other data, such as pictures, music and videos, can tolerate some distortion because human perception might not be sensitive to some of the features.

Conventional research on wireless communication technologies focuses on minimizing distortion through various methods and designs. Conversely, Wu and doctoral student Ning Sun work with distortion-tolerant systems. Rather than limiting or minimizing distortion, their wireless systems allow for controlled distortion, which requires less power than conventional technologies.

“If we accept the fact that distortion is inevitable in practical communication systems, why not directly design a system that is naturally tolerant to distortion?” Wu said. “Allowing distortion instead of minimizing it, our proposed distortion-tolerant communication can operate in rate levels beyond the constraints imposed by Shannon channel capacity.”

Shannon channel capacity is the maximum rate at which distortion-free information can be transmitted over a communication channel.

The goal of Wu’s research project generally is to advance the knowledge of ultra-low power wireless networks. He and his colleagues will construct and test theories, design tools to enable distortion-tolerant technologies and design and develop prototype networks. Their theories exploit the unique features of wireless monitoring systems, such as delay-tolerance, distortion-tolerance, low data rate and spatial data correlation, all of which provide more freedom in network design.

The researchers’ work will accelerate the widespread deployment of ultra-low power wireless networks used for surveillance, environmental and structure monitoring, and biomedical sensing. These applications have the ability to provide early warnings to prevent catastrophic events, such as structural failures, to improve public safety and homeland security and to promote the health and well being of the general public.

The National Science Foundation grant totals $279,425 over three years.

Wu and Sun recently published findings on distortion-tolerant wireless networks in IEEE Transactions on Wireless Communications.

Featured

  • Accelerating a Pathway

    There is a new trend touting the transformational qualities of AI’s ability to deliver actionable data and predictive analysis that in many instances, seems to be a bit of an overpromise. The reality is that very few solutions in the cyber-physical security (CPS) space live up to this high expectation with the one exception being the new generation of Physical Identity and Access Management (PIAM) software – herein recategorized as PIAM+. Read Now

  • Protecting Your Zones

    It is game day. You can feel the crowd’s energy. In the parking lot. At the gate. In the stadium. On the concourse. Fans are eager to party. Food and merchandise vendors ready themselves for the rush. Read Now

  • Street Smarts

    The ongoing acceptance of AI and advanced data analytics has allowed surveillance camera technology to shift from being a tactical tool to a strategic business solution. Combining traditional surveillance technology with AI-based data-driven insights can streamline transportation systems, enhance traffic management, improve situational awareness, optimize resource allocation and streamline emergency response procedures. Read Now

  • The Progress of Biometrics

  • Next-Gen AI for Smart Cities

    The future of smart city technology is not being shaped in Silicon Valley — it is taking root in Dubuque, Iowa. With a population of about 60,000, this mid-sized city has become a live testbed for AI-driven traffic management thanks to a unique public-private collaboration led by Milestone Systems. Project Hafnia demonstrates how cities can transform urban mobility and safety through Responsible Technology—without costly infrastructure overhauls. Read Now

New Products

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.