Quantum Cryptography Put to Work for Electric Grid Security

Quantum Cryptography Put to Work for Electric Grid Security

The demonstration was performed in the electric grid test bed that is part of the Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) project at the University of Illinois Urbana-Champaign (UIUC) that was set up under the Department of Energy's Cyber Security for Energy Delivery Systems program in the Office of Electricity Delivery and Energy Reliability.

Novel methods for controlling the electric grid are needed to accommodate new energy sources such as renewables, in which availability can fluctuate on short time scales. This requires transmission of data to and from control centers; but for grid-control use, data must be both trustworthy and delivered without delays. The simultaneous requirements of strong authentication and low latency are difficult to meet with standard cryptographic techniques. New technologies that further strengthen existing cyber security protections are needed.

Quantum cryptography provides a means of detecting and defeating an adversary who might try to intercept or attack the communications. Single photons are used to produce secure, random numbers between users, and these random numbers are then used to authenticate and encrypt the grid control data and commands. Because the random numbers are produced securely, they act as cryptographic key material for data authentication and encryption algorithms.

At the heart of the quantum-secured, communications system is a unique, miniaturized QC transmitter invention, known as a QKarD, that is five orders of magnitude smaller than any competing QC device. Jane Nordholt, the Los Alamos principal investigator, put it this way, "This project shows that quantum cryptography is compatible with electric-grid control communications, providing strong security assurances rooted in the laws of physics, without introducing excessive delays in data delivery."

A late-2012 demonstration at UIUC showed that quantum cryptography provides the necessary strong security assurances with latencies (typically 250 microseconds, including 120 microseconds to traverse the 25 kilometers of optical fiber connecting the two nodes) that are at least two orders of magnitude smaller than requirements. Further, the team's quantum-secured, communications system demonstrated that this capability could be deployed with only a single, optical fiber to carry the quantum, single-photon communications signals, data packets and commands.

"Moreover, our system is scalable to multiple monitors and several control centers," said Richard Hughes, the co-principal investigator from Los Alamos.

The TCIPG, cyber-physical test bed provides a realistic environment to explore cutting-edge research and prove emerging smart grid technology in a fully customizable environment. In this demonstration, high-fidelity, power simulation was leveraged using the real-time, digital simulator to enable hardware in the loop power simulation to drive real phasor measurement units (PMUs), deployed on today's electric grid that monitor its operation.

"The simulator provides a mechanism for proving technology in real-world scenarios," said Tim Yardley, assistant director of test bed services. "We're not just using perfect or simulated data, so the results demonstrate true feasibility."

The power simulation was running a well-known, power-bus model that was perturbed by introducing faults, which drove the analog inputs on the connected hardware PMU. The PMU then communicated via the standard protocol to the quantum cryptography equipment that handled the key generation, communication and encryption/decryption of the connection traversing 25 kilometers of fiber. A phasor data concentrator then collected and visualized the data.

"This demonstration represents not only a realistic power model, but also leveraged hardware, software and standard communication protocols that are already widely deployed in the energy sector," said Donald Biggar Willett Professor of Engineering at UIUC and principal investigator for TCIPG, William H. Sanders. "The success of the demonstration emphasizes the power of the TCIPG cyber-physical test bed, and the strength of the quantum cryptography technology developed by Los Alamos."

The Los Alamos team submitted 23 U.S. and foreign patent applications for the inventions that make quantum-secured communications possible. The Los Alamos Technology Transfer Division has already received two licensing inquiries from companies in the electric grid control sector, and the office plans an industry workshop for early 2013 when the team's patents will be made available for licensing.

The Los Alamos team is seeking funding to develop a next-generation QKarD that uses integrated, electro-photonics methods that would be even smaller, more highly-integrated, and open the door to a manufacturing process that would result in much lower unit costs.

Featured

  • From the Most Visible to the Less Apparent

    The Cybersecurity and Infrastructure Security Agency (CISA) states “There are 16 critical infrastructure sectors whose assets, systems, and networks, whether physical or virtual, are considered so vital to the United States that their incapacitation or destruction would have a debilitating effect on security, national economic security, and national public health or safety or any combination thereof.” Read Now

  • Work Anywhere, Secure Everywhere: 2025 Tech Predictions

    Five years after the pandemic, organizations need a flexible work reset to stay productive and support any work arrangement. Despite the pandemic-fueled workplace shift that began five years ago, companies across industries and geographies continue to increase flexible work configurations. However, many tools adopted during COVID onset remain in place today, and they now need a reset to keep employees productive and secure regardless of location. Security leaders must re-evaluate existing practices and reinvest in zero trust security, passwordless environments, and automation adoption to improve efficiency and productivity. Read Now

  • Guiding Principles

    Construction sites represent a unique sector of perimeter security, especially amidst a steady increase in commercial construction. As in any security environment, assessing weaknesses and threats remains paramount and modern technology, coupled with sound access control principles, are critical in addressing vulnerabilities at even the most secure construction sites around the world. Read Now

  • Empowering 911

    In the wake of the tragic murder of UnitedHealth Group CEO Brian Thompson, media coverage flooded the airwaves with images, videos and detailed timelines of the suspect’s movements. While such post-incident analysis is not new, today’s 911 centers now have access to similar data in real-time. This technological evolution marks a pivotal transformation in emergency response, transitioning from analog calls to a digital ecosystem capable of saving more lives. Read Now

New Products

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings.

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.