Biometrics on the Move

Biometrics on the Move

Smart cards and smartphones make play for access control

Biometrics on the MoveMultiple factors of authentication, including biometrics, can increase the probability that a person presenting a card to a reader is the same person who was initially issued the card. Biometrics authenticates identity by measuring and verifying an individual’s unique physical characteristics, such as fingerprints, hand and face geometry, or patterns found in the eye’s iris. Since these identifiers can’t be borrowed or stolen, biometrics provide identity authentication with a strong degree of confidence.

Until recently, biometric templates, such as those for iris recognition, were carried on a plastic credential and presented for authentication by holding the card in front of an iris recognition camera. Now, these same templates can be loaded onto an NFCenabled smartphone along with other digital ID credentials for physical and logical access control.

Going Mobile

Several trends are driving the adoption of physical and logical access control on smartphones and other mobile devices. The first is the inclusion of NFC technology on smartphones, which provides an industry-standard, short-range wireless link for exchanging access-control data across a several centimeter distance so users can “present” credentials on phones to a reader. As the NFC mobile-payment model grows in popularity, it drives further demand for NFC phones which also can be used in physical access control applications. Smartphones that do not feature NFC technology can be securely upgraded to this capability by using an NFC-enabled add-on device such as a microSD card.

Additionally, there is now a new type of identity representation that operates within a trusted boundary and uses the NFCenabled smartphone’s secure element or SIM—usually an embedded tamper-proof integrated circuit, or a plug-in module version. This setup ensures that all transactions between NFC-enabled smartphones, SIM cards and other secure media devices also can be trusted inside the access-control managed network.

Within this trusted boundary, organizations can provide mobile access-control credentials in either of two secure and convenient ways: Connecting the mobile device to the network via a USB or Wi-Fi-enabled link and use an Internet portal, similar to how traditional plastic credentials are provisioned, or issue digital credentials over-the-air via a mobile network operator, in much the same way that today’s smartphone users download apps and songs. To issue digital credentials, the NFC-enabled smartphone communicates with a Trusted Service Manager (TSM), which interfaces either directly to the mobile network operator (MNO) or to its TSM, delivering a key to the SIM card.

The mobile access model offers a number of benefits. It eliminates credential copying, and makes it easier to issue temporary credentials as needed, cancel credentials if a device is lost or stolen, and monitor and modify security parameters when required. The mobile model is ideal for converged physical and logical access, enabling smartphones to be used for multiple applications including cashless vending; opening residential locks; accessing an on-line physical access-control reader; entering a building protected by an NFC-enabled electromechanical lock; logging on to a PC; generating OTP software tokens to log onto network devices; and implementing biometric authentication.

How Biometrics Work

Biometrics verify that a card holder has been bound to his or her card, using something that can only be possessed by the person to whom the card was issued. Biometric data is unique to each person and cannot be forgotten, lost or stolen. Because of this, biometric technology offers enhanced security when compared with conventional identification methods. It does not rely on passwords, pin codes or photographic ID, and is too complex to forge. Biometrics are generally used as part of a verification system, which checks a biometric that has been presented by an individual against the biometric in a database linked to that person’s file—a one-to-one system, or an identification system—referred to as one-to-many systems because they are used to identify an unknown person or biometric.

Biometrics has long been used by the government, and is a key element of the latest federal identity standards. For instance, the Department of Defense (DoD) has incorporated biometrics into the common access card (CAC) that controls entry to DoD facilities and information systems. Biometrics is an integral part of the latest identity credentials for federal agency employees and contractors. In 2005, the National Institute of Standards and Technology (NIST) released Federal Information Processing Standards Publication 201 (FIPS 201), which defined the identity vetting, enrollment and issuance requirements for a common, highly-secure identity credential called the Personal Identity Verification (PIV) card that leverages both smart card and biometric technology. In 2006, FIPS 201-1 further specified that a facial image, as well as fingerprint biometrics, be included on PIV cards.

On NFC Smartphones

The same benefits associated with storing biometric templates on physical smart cards also apply to the mobile accesscontrol model. Next-generation mobile access platforms enable users to implement biometrics templates similar to traditional physical credential implementation while offering the added benefits of being able to carry the credentials in their smartphones. For instance, a smartphone can carry credentials that securely store biometric templates, such as those for iris recognition. To present these credentials for authentication, the user simply holds the smartphone in front of an iris recognition camera. A variety of biometric templates can be securely stored in these digital credentials.

The smartphone offers a portable database for template storage well suited for installations that span a large number of sites. Storing the template on a digital NFC smartphone credential also simplifies system start-up, and is ideal for supporting unlimited user populations. It reduces installation costs by eliminating the redundant wiring requirements for traditional biometric template management on plastic cards. And, because an access-control system can continuously read the biometrics data carried inside a smartphone, this model enables pre-authentication before someone even arrives at a door, speeding and simplifying each access transaction.

Another advantage of mobile access control is simplification in deployment and management of biometric security and other multi-factor authentication applications. When a situation arises that requires a higher level of security, organizations can dynamically invoke two-factor authentication. To do this, an application can be pushed to the phone that, for instance, requires the user to enter a 4-digit pin, perform a gesture swipe on the phone or present biometric data within the phone to a reader before it sends the message to open the door. With this approach, multifactor authentication becomes a contextual, real-time, managed service.

Latest Developments

HID Global is partnering with a number of leaders in the biometric space to deliver HID-enabled credential solutions that support biometrics, enabling users to securely store a wide variety of biometric templates. An alternative to storing the biometric template on the card is to store them in the reader, on servers, and/or in individual panels. This would be necessary for users of proximity or magnetic stripe cards that are unable to store the template.

The next step is to deploy biometrics on NFC-enabled smartphones, as well. In March 2012, Iris ID Systems Inc. announced interoperability between its IrisAccess platform and NFC-enabled BlackBerry smartphones equipped with HID Global’s iCLASS digital credentials. This means that BlackBerry Bold 9900/9930 smartphones activated with HID Global’s iCLASS digital credentials are interoperable with the installed base of iCLASS readers that are embedded in the Iris iCAM 7000 series for applications ranging from physical access systems in buildings, to systems that track time and attendance, to other identity-dependent solutions. Using an NFC-enabled Black- Berry smartphone, the iris templates of a user are securely stored on an iCLASS digital credential on the phone. This credential can then be presented for authentication by simply holding the NFC-enabled BlackBerry smartphone in front of an iCAM7000 series iris camera, in the same way that users present physical iCLASS smart cards to these readers.

Biometrics continue to be an important element in access-control systems that use multi-factor authentication for the highest levels of security. The latest solutions can be deployed on a combination of traditional plastic ID cards or NFC-enabled smartphones, for a variety of commercial and government applications. The mobile access-control model using smartphones is particularly compelling, and is enabled by NFC technology and a new access-control data structure that operates in a trusted boundary to significantly improve overall system security and user convenience. This offers an ideal platform for converged physical and logical access that includes biometric technology for identity authentication.

This article originally appeared in the May 2013 issue of Security Today.

Featured

  • From the Most Visible to the Less Apparent

    The Cybersecurity and Infrastructure Security Agency (CISA) states “There are 16 critical infrastructure sectors whose assets, systems, and networks, whether physical or virtual, are considered so vital to the United States that their incapacitation or destruction would have a debilitating effect on security, national economic security, and national public health or safety or any combination thereof.” Read Now

  • Work Anywhere, Secure Everywhere: 2025 Tech Predictions

    Five years after the pandemic, organizations need a flexible work reset to stay productive and support any work arrangement. Despite the pandemic-fueled workplace shift that began five years ago, companies across industries and geographies continue to increase flexible work configurations. However, many tools adopted during COVID onset remain in place today, and they now need a reset to keep employees productive and secure regardless of location. Security leaders must re-evaluate existing practices and reinvest in zero trust security, passwordless environments, and automation adoption to improve efficiency and productivity. Read Now

  • Guiding Principles

    Construction sites represent a unique sector of perimeter security, especially amidst a steady increase in commercial construction. As in any security environment, assessing weaknesses and threats remains paramount and modern technology, coupled with sound access control principles, are critical in addressing vulnerabilities at even the most secure construction sites around the world. Read Now

  • Empowering 911

    In the wake of the tragic murder of UnitedHealth Group CEO Brian Thompson, media coverage flooded the airwaves with images, videos and detailed timelines of the suspect’s movements. While such post-incident analysis is not new, today’s 911 centers now have access to similar data in real-time. This technological evolution marks a pivotal transformation in emergency response, transitioning from analog calls to a digital ecosystem capable of saving more lives. Read Now

New Products

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.

  • Hanwha QNO-7012R

    Hanwha QNO-7012R

    The Q Series cameras are equipped with an Open Platform chipset for easy and seamless integration with third-party systems and solutions, and analog video output (CVBS) support for easy camera positioning during installation. A suite of on-board intelligent video analytics covers tampering, directional/virtual line detection, defocus detection, enter/exit, and motion detection.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.