Eye Tracking Could Outshine Passwords if Made User Friendly

Eye Tracking Could Outshine Passwords if Made User Friendly

It's a wonder we still put up with passwords.

We forget our highly-secretive combinations, so we frequently have them reset and sent to our cellphones and alternative email addresses. We come up with clever jumbles of letters and words, only to mess up the order. We sit there on the login screen, desperately punching in a code we should know by heart.

Despite their inefficiencies, passwords are still the most common electronic authentication systems, protecting everything from our bank accounts, laptops and email to health information, utility bills and, of course, our Facebook profiles. While fingerprint-, eye- and face-recognition authentication technology is progressing, these biometric security systems haven't gone mainstream yet.

University of Washington engineers are trying to figure out why. They found in a recent study that the user's experience could be the key to creating a system that doesn't rely on passwords.

"How humans interact with biometric devices is critically important for their future success," said lead researcher Cecilia Aragon, a UW associate professor of human centered design and engineering. "This is the beginning of looking at biometric authentication as a socio-technical system, where not only does it require that it be efficient and accurate, but also something that people trust, accept and don’t get frustrated with."

Aragon believes one of the reasons face- and eye-recognition systems haven't taken off is because the user's experience often isn't factored into the design. Her team presented its study, one of the first in the field to look at user preferences, at the International Association for Pattern Recognition's International Conference on Biometrics in June. The researchers found that speed, accuracy and choice of error messages were all important for the success of an eye-tracking system.

"If you develop the technology and user interface in parallel, you can make sure the technology fits the users rather than the other way around," Aragon said. "It's very important to have feedback from all stakeholders in the process while you're designing a biometric identification system."

The UW team, in collaboration with Oleg Komogortsev at Texas State University, developed a new biometric authentication technique that identifies people based on their eye movements. They ran subjects through several types of authentication, then asked for feedback on the usability and perceived security.

In the study, users simulated withdrawing money from an ATM. The prototype – an ATM look-alike computer screen with eye-tracking technology – presented three separate types of authentication: a standard four-number PIN, a target-based game that tracks a person's gaze and a reading exercise that follows how a user's eyes move past each word. With each, researchers measured how long it took and how often the system had to recalibrate.

Eye-tracking technology uses infrared light and cameras. The light reflects off the surface of the eyeball back to the camera when a user's eye is following a dot or words on the computer screen. The tracking device picks up the unique way each person's eye moves.

The UW research team chose the ATM scenario because it's familiar to most people and many machines already have a basic security camera installed.

"The goal of eye-tracking signatures is to enable inexpensive cameras instead of specialized eye-tracking hardware," Aragon said. "This system can be used by basically any technology that has a camera, even a low-quality webcam."

When interviewed afterward, most of the study subjects said they don't trust the standard push-button PIN used in most ATMs and most assumed that the more advanced technologies would offer the best security.

But, when authentication failed – the research team deliberately caused it to not recognize users during one trial – they lost faith in the eye-tracking systems. This study showed that future eye-tracking technology should give clear error messages or directions on how users should proceed if they get off track.

"The error messages we provided and the feedback we gave were really important for making it usable," said Michael Brooks, a UW doctoral student in human centered design and engineering. "It would have been difficult to design these prototypes without getting feedback from users early on."

“The standard PIN authentication won for its speed and user-friendliness, but the dot targeting exercise also scored high among users and didn't take nearly as long as the reading exercise. This game-like option could be a model for future versions,” Brooks said.

The researchers plan to look next at developing similar eye-tracking authentication for other systems that use basic cameras, such as desktop computers. A similar design could be used to log in or gain access to a secure website.

The research was funded by the National Institute of Standards and Technology.

Featured

  • Maximizing Your Security Budget This Year

    7 Ways You Can Secure a High-Traffic Commercial Security Gate  

    Your commercial security gate is one of your most powerful tools to keep thieves off your property. Without a security gate, your commercial perimeter security plan is all for nothing. Read Now

  • Protecting Data is Critical

    To say that the Internet of Things (IoT) has become a part of everyday life would be a dramatic understatement. At this point, you would be hard-pressed to find an electronic device that is not connected to the internet. Read Now

  • Mobile Access Adoption

    Smartphones and other mobile devices have had a profound impact on how the world securely accesses the workplace and its services. The growing adoption of mobile wallets and the new generation of users is compounding this effect. Read Now

  • Changing Mindsets

    We have come a long way from the early days of fuzzy analog CCTV systems. During that time, we have had to migrate from analog to digital signals. When IP-based network cameras arrived, they opened a new world of quality and connectivity but also introduced plenty of challenges. Thankfully, network devices today have become smart enough to discover themselves and even self-configure to some degree. While some IT expertise is certainly required, things are much smoother these days. The biggest change is in how fast security cameras and supporting infrastructure are evolving. Read Now

Featured Cybersecurity

Webinars

New Products

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles. 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3