Trapping Terahertz Rays for Better Security Scanners

Trapping Terahertz Rays for Better Security Scanners

Medical diagnostic and security scanners with higher sensitivity could result from University of Adelaide research into detecting T-rays (terahertz waves).

Published in the journal Advanced Optical Materials, the researchers describe a novel structure that traps terahertz waves in tiny (micro-scale) holes to produce much higher contrast imaging than currently possible.

Trapping Terahertz Rays for Better Security ScannersTerahertz waves, which are electromagnetic waves with frequencies between those used for mobile phone communications and for optical fiber communications, are used for some airport body scanners and other security scanners to see through packages and clothes. They are also capable of distinguishing malignant from healthy tissues for Cancer detection.

“This work takes an unconventional path to detecting terahertz waves,” said Dr. Withayachumnankul, project leader and ARC Postdoctoral Fellow in the University’s School of Electrical and Electronic Engineering.

Dr. Withayachumnankul has worked with RMIT University in Melbourne and Albert Ludwigs University of Freiburg in Germany to produce the new structure using metamaterials (materials that show non-natural properties with the use of carefully engineered structures).

The structure is made of tiny (micro-scale) cavities etched into the surface of silicon. Terahertz waves that hit the structure are captured and compressed inside the cavities.

“By tailoring the silicon properties through the use of micro-structures (the size of a cross-section of human hair) it is possible to trap and confine the waves in a volume much smaller than the wavelength of the terahertz waves,” said Dr. Withayachumnankul. “This significantly improves the efficiency of terahertz devices, such as scanners, and will have broad impact on biomedicine and homeland security, where better contrast means more accurate identification.”

RMIT team leader Dr. Sharath Sriram said, “We needed to carefully select appropriate materials and processes to produce this device. We couldn’t construct the micro-cavities in our first choice of material, so we changed to silicon, which we had to adapt to make it slightly electrically conductive. We then used established silicon microfabrication techniques to create the micro-cavities, exploiting the conductive properties.”

The new structure could be added to conventional terahertz imaging devices to enhance their performance.

The research was supported by the Australian Research Council and partially by a Victoria Fellowship to Dr. Sriram.

Featured

New Products

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.