Taking Charge Organizations must stop relying on their Internet service providers to protect them from attacks and take matters into their own hands

Taking Charge

Organizations must stop relying on their Internet service providers to protect them from attacks and take matters into their own hands

Taking Charge Organizations must stop relying on their Internet service providers to protect them from attacks and take matters into their own handsDistributed Denial of Service (DDoS) attacks are some of the oldest Internet threats and continue to be the top risk to networks around the world. As protections have evolved, the technology used by hackers has adapted and become much more sophisticated. New attack types now target applications and services, and oftentimes, they’re masked in bulk layer 3 and 4 DDoS events, making it difficult to detect them.

The financial services industry is one of the largest targets of cyber criminals for DDoS attacks, followed closely by the government sector. Besides disrupting Internet operations through a brute-force data onslaught, DDoS attacks have recently been used to hide more sophisticated attempts to break into financial and e-commerce information. These attacks often have the intent of disrupting operations mostly through the destruction of access to information.

There are generally three categories of motivations behind DDoS attacks: political, retaliatory and financial. Political attackers target those who disagree with their political, social or religious beliefs. When a botnet gets shut down or a major cyber-crime ring is busted, it can trigger retaliatory attacks against those who aided or assisted the authorities. Financially-motivated attacks are a payto- play scheme, where hackers are compensated by a third-party to conduct the attack on their behalf. With each motivation, the results are the same—your network and online services are down, and can remain down for an extended period of time.

Watch Out for Advanced Application Layer DDoS Attacks

There are many kinds of DDoS attacks that are widely used today, including older methods from the early days of the Internet to the latest advanced layer 7 attacks that target application services. SYN flood and HTTP GET floods are the most common and are used to overwhelm network connections or overload servers behind firewalls and intrusion protection services (IPS).

More worrisome, however, is that application layer attacks use far more sophisticated mechanisms to attack organizations’ networks and services. Rather than simply flooding a network with traffic or sessions, these attack types target specific applications and services to slowly exhaust resources at the application level.

Application layer attacks can be effective using small traffic volumes and may appear to be completely normal to most traditional DDoS detection methods. This makes them harder to detect than basic types of DDoS attacks.

DDoS Protection Options

Most ISPs offer layer 3 and 4 DDoS protection to keep organizations’ links from becoming flooded during bulk, volumetric events; however, they don’t have the capability to detect the much smaller layer- 7-based attacks. Data centers should not rely on their ISP alone to provide a complete DDoS solution that includes application layer protection. Instead, they should consider putting in place one of the following measures:

DDoS service providers. There are many hosted, cloud-based DDoS solutions that provide layer 3, 4 and 7 mitigation services. These can range from inexpensive plans for small websites to large-scale enterprise plans that can cover multiple sites. They’re usually very easy to set up and heavily advertised to small and mid-sized organizations. Most offer customized pricing options and many have advanced layer 7 detection services for large organizations that require sensors to be installed in the data center.

Although many companies opt to go this route, some experience unpredictable and significant overage charges when they’re hit with high-volume DDoS attacks. Performance also may not be up to their expectations as the service providers redirect DDoS traffic to mitigation centers, instead of stopping it in real time. This is especially problematic for short duration attacks typically encountered.

Firewall or IPS. Almost every modern firewall and intrusion protection system (IPS) claims some level of DDoS defense. Advanced, next-generation firewalls (NGFWs) offer DDoS and IPS services that can mitigate many DDoS attacks. Having one device for firewall, IPS and DDoS is easier to manage, but one device may be overwhelmed with volumetric DDoS attacks and it may not have the sophisticated layer 7 detection mechanisms other solutions offer.

Another trade-off is that enabling DDoS protection on the firewall or IPS may impact the overall performance of a single device, resulting in reduced throughputs and increased latency for end users.

Dedicated DDoS attack mitigation appliances. These are dedicated, hardwarebased devices that are deployed in a data center, used to detect and stop basic (layer 3 and 4) and advanced (layer 7) DDoS attacks. Deployed at the primary entry point for all web-based traffic, they can both block bulk volumetric attacks and monitor all traffic coming in and leaving the network to detect suspicious patterns of layer 7 threats.

By using a dedicated device, expenses are predictable, as the cost is fixed whether an organization suffers from one attack in six months or is attacked every day. The trade-offs are: These devices are an additional piece of hardware to manage; lower-bandwidth units can be overwhelmed during bulk-volumetric attacks; and many manufacturers require frequent signature updates.

Dedicated hardware-based DDoS attack mitigation solutions come in two primary versions: Carrier and Enterprise. Carrier versions are large, expensive solutions designed for global ISP networks. Most organizations that want to protect their private data centers usually look at the Enterprise models to provide costeffective, DDoS detection and mitigation. Today’s models provide capacities that can handle large-scale, volumetric attacks for 100 percent layer 3, 4 and 7 protection or can be used to supplement basic, ISP-based, bulk DDoS protection with advanced layer 7 detection and mitigation. Although these devices require an up-front investment, compared to hosted solutions, they are generally much less expensive in the long run when overage charges are factored in with the total cost.

Enterprises should look for DDoS attack mitigation appliances that use adaptive, behavior-based methods to identify threats. Such appliances learn baselines of normal application activity and then monitor traffic against them. This adaptive/ learning approach has the advantage of protecting users from unknown zeroday attacks as the device doesn’t need to wait for signature files to be updated.

DDoS attacks are on the rise for almost any organization, large or small. The potential threats and volumes are increasing as more devices, including mobile handsets, join the Internet. If your organization has a web property, the likelihood of getting attacked has never been higher.

The evolving nature of DDoS attacks means that enterprises can no longer depend solely on their ISP for protection. Organizations must start making shifts now that give them greater foresight and more proactive defenses for network and application-level services.

This article originally appeared in the August 2014 issue of Security Today.

Featured

  • Human Risk Management: A Silver Bullet for Effective Security Awareness Training

    You would think in a world where cybersecurity breaches are frequently in the news, that it wouldn’t require much to convince CEOs and C-suite leaders of the value and importance of security awareness training (SAT). Unfortunately, that’s not always the case. Read Now

  • Windsor Port Authority Strengthens U.S.-Canada Border Waterway Safety, Security

    Windsor Port Authority, one of just 17 national ports created by the 1999 Canada Marine Act, has enhanced waterway safety and security across its jurisdiction on the U.S.-Canada border with state-of-the-art cameras from Axis Communications. These cameras, combined with radar solutions from Accipiter Radar Technologies Inc., provide the port with the visibility needed to prevent collisions, better detect illegal activity, and save lives along the river. Read Now

  • Survey: 84 Percent of Healthcare Organizations Spotted Cyberattack in Last 12 Months

    Netwrix, a vendor specializing in cybersecurity solutions focused on data and identity threats, surveyed 1,309 IT and security professionals globally and recently released findings for the healthcare sector based on the data collected. It reveals that 84% of organizations in the healthcare sector spotted a cyberattack on their infrastructure within the last 12 months. Phishing was the most common type of incident experienced on premises, similar to other industries. Read Now

  • Keynote Speakers Announced for ISC West 2025

    ISC West, hosted in collaboration with premier sponsor the Security Industry Association (SIA), unveiled its 2025 Keynote Series. Featuring a powerhouse lineup of experts in cybersecurity, retail security, and leadership, each keynote will offer invaluable insights into the challenges and opportunities transforming the field of security. Read Now

    • Industry Events
    • ISC West

Featured Cybersecurity

Webinars

New Products

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction. 3

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area. 3

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3