Following the Code
Code changes are an important part of access control or egress
- By Lori Greene
- Apr 01, 2016
Although the code language has been refined over the last few editions
of both the International Building Code (IBC) and NFPA
101—The Life Safety Code—the code requirements for electrified
hardware continue to be confusing, often resulting in inconsistent
application and enforcement.
There are seven basic code categories for electrified hardware used to control
access or egress, and each has seen recent code changes. Many of these code applications,
but not all, fall into the category commonly called “special locking arrangements.”
We’ll review all seven categories, providing code references to facilitate
additional research and highlighting the relevant changes that integrators
need to be aware of to avoid costly and potentially dangerous violations.
Controlled Access / Free Egress: IBC – 1010.1.9 (2015), 1008.1.9 (2012);
NFPA 101 – 7.2.1.5 (2015 and 2012)
The majority of electrified hardware applications fall into this category. As the
name implies, an access control reader does not inhibit egress, it controls access
only and is typically mounted on the ingress side of the opening.
This type of system is not addressed by the codes as a special locking arrangement,
because the hardware allows free egress by turning the lever on the lockset
or pushing the touchpad on the panic hardware. The same code requirements that
apply to mechanical hardware must be met by doors with this type of electrified
hardware. Doors must be readily operable from the egress side without keys, tools,
or special knowledge or effort, and without tight grasping, tight pinching, or twisting of the wrist. One operation must unlatch the door from the egress side, and
operable hardware must be mounted between 34 inches and 48 inches above the
floor. Applications that do not allow immediate free egress will typically fall into
one of the categories outlined below.
Delayed Egress: IBC – 1010.1.9.7 (2015), 1008.1.9.7 (2012); NFPA 101 –
7.2.1.6.1 (2015 and 2012)
Delayed egress locking systems may include panic hardware or an electromagnetic
lock with delayed egress circuitry, or a delayed egress controller used in combination
with other listed components. This hardware delays entrance or exit for
no more than 15 seconds unless a 30-second delay is approved by the Authority
Having Jurisdiction (AHJ). The use of these locks is dependent upon the use
group or occupancy classification, and the requirements vary between the IBC
and NFPA 101. The IBC does not allow delayed egress locks on Assembly, Educational,
or High Hazard occupancies; NFPA 101 includes limitations specific to
each occupancy classification.
There are many conditions for the use of delayed egress locks, including a
sprinkler/fire alarm system that releases the lock to allow immediate egress upon
activation. Actuation requirements to begin the 15-second timer now include
a maximum force of 15 pounds applied for no more than 3 seconds, making it
consistent with NFPA 101 requirements. The 2015 edition of the IBC also added
a requirement for delayed egress locks to be listed in accordance with UL 294:
Access Control System Units.
Controlled Egress: IBC – 1010.1.9.6 (2015), 1008.1.9.6 (2012); NFPA 101 –
18.2.2.2.5-6, 19.2.2.2.5-6 (2015 and 2012)
This application is specific to healthcare occupancies equipped throughout
with an automatic sprinkler system or automatic smoke or heat detection system,
and allows certain types of units to have locked doors in a means of egress when
this control is needed for the safety or security of the patients.
Electromagnetic locks, or delayed egress devices modified to have an “infinite
delay” instead of the typical 15-second delay are the most common locks used in
a controlled egress system. Both of these products must be fail safe and allow free
egress when power is removed. The 2009 IBC incorrectly referred to the products
used in these systems as “delayed egress locks” even though this section of the
code does not require the hardware to release automatically after a timer is actuated.
This terminology was changed to “special egress” in the 2012 edition, and is
now called “controlled egress” in the 2015 edition.
The IBC states that a building occupant must not be required to pass through
more than one door with a controlled egress lock before reaching an exit, and
emergency lighting is required at the door. The 2015 IBC has added a requirement
for the locking system to be listed in accordance with UL 294, but the NFPA 101
requirements vary slightly, so refer to the referenced section for specifics.
Electromagnetic Lock with Sensor Release: IBC – 1010.1.9.8 (2015), 1008.1.9.8
(2012); NFPA 101 – 7.2.1.6.2 (2015 and 2012)
'In recent editions of the IBC and NFPA 101, the section that applies to locks
released by a sensor is called Access Controlled Egress Doors. Because of this title,
this section was sometimes misapplied to all doors with access control readers,
even though those most of those doors typically allow free egress without sensors
or other release devices. In the 2015 IBC, the title of the section was changed to
Sensor Release of Electrically Locked Egress Doors, to avoid this confusion.
'This section is typically applied to electromagnetic locks, and mag-locks that
are unlocked by door-mounted hardware instead of a sensor are addressed by a
different set of code requirements. A mag-lock that is released by a sensor detecting
an approaching occupant is also required to be released by actuation of a
marked push button adjacent to the door, and by activation of the fire alarm or sprinkler system (if present), and upon power failure.
Electromagnetic Lock with Door Hardware Release: IBC – 1010.1.9.9 (2015),
1008.1.9.9 (2012); NFPA 101 – 7.2.1.5.6 (2015 and 2012)
In the 2009 editions of both the IBC and NFPA 101, a new section was added
to address doors with mag-locks that are released by hardware mounted on the
door. The door-mounted hardware may include a lever handle, panic hardware, or
other device equipped with a request-to-exit (REX or RX) switch or an electronic
touch sensor. The added section clarifies the code requirements for mag-locks released
this way as opposed to mag-locks released by a sensor.
A mag-lock released by door-mounted hardware may not be used in all use
group or occupancy types, so refer to the applicable code to verify the acceptable
locations. The door must be equipped with listed hardware mounted on
the door leaf, which incorporates a built-in switch to directly release the electromagnetic
lock and unlock the door immediately. The release device must
have an obvious method of operation, and must be readily operated with one
hand under all lighting conditions. The code requirements that address this application
do not require the lock to unlock upon actuation of the fire alarm or
sprinkler system, but the lock must unlock upon loss of power to the switch in
the door-mounted hardware.
Elevator Lobby Egress: IBC – 3006.4 (2015), 713.14.1 (2012); NFPA 101 –
7.2.1.6.3 (2015 and 2012)
The IBC does not currently include a section specific to locks on elevator lobby
doors; elevator lobbies are required to have a code-compliant means of egress,
so methods used to secure the doors would be limited by the IBC to an alarm to
discourage egress through the tenant space, or possibly a delayed egress lock. For
facilities where NFPA 101 (2009 edition or later) is enforced, a fail-safe lock may
be used if other criteria are met. This lock will allow access through the secured
doors during a fire alarm, so building occupants can find another exit. Note that
some jurisdictions have adopted modifications to the IBC that address locks on
elevator lobby doors.
NFPA 101 permits electrified locking of elevator lobby doors only if the building
has an automatic sprinkler system or a fire alarm system and where this type
of locking is allowed by the occupancy chapters. The lock must unlock automatically
upon actuation of the sprinkler system or fire alarm system (except when the
system is initiated by a manual fire alarm box) and upon loss of power to the lock.
When the lock is unlocked, the doors must remain unlocked until the fire alarm
system has been manually reset. If the locking hardware has a latch, there must be
code-compliant hardware on the door leaf to release the latch. Locking systems
used on elevator lobby doors must be listed in accordance with UL 294, and a
two-way communication system must be installed in the elevator lobby to allow a
building occupant to call for help.
Stairwell Reentry: IBC – 1010.1.9.11 and 403.5.3 (2015), 1008.1.9.11 and
403.5.3 (2012); NFPA 101 – 7.2.1.5.8 (2015 and 2012)
If stair doors are locked on the stair side, they must allow reentry back into
the building to ensure the safety of building occupants during a fire. If a stairwell
becomes compromised by smoke, occupants are able to leave the stair through
remotely-unlocked doors and find another exit.
A fail safe lockset or fail safe lever trim for fire exit hardware is typically used
to meet the stairwell reentry requirements. Electric strikes may not be used for
stairwell reentry because electric strikes on fire doors must be fail secure. If an
electromagnetic lock is used on a stair door in order to unlock the door remotely,
latching hardware must also be present in order to provide the positive latching
required for fire doors.
When considering which code requirements to follow, first identify which category
the hardware falls into, and refer to the applicable code section. Keep in mind
that state or local requirements could differ from those of the IBC
or NFPA 101, so it’s important to be aware of the codes in your
facility’s jurisdiction. Refer to the published codes for the detailed
code requirements, and consult the Authority Having Jurisdiction
for more information about local requirements.
This article originally appeared in the April 2016 issue of Security Today.