Networks are Like Roadways: Avoid Gridlock, Support IoT

As every metropolitan area grows there are multiple forms of transportation to move its people. The obvious and most flexible for the user is the highway and road system. However, this form of infrastructure becomes congested as the population grows, often leading to gridlock if no viable alternatives are provided. In my part of Canada, we expect to spend upward of $50 billion over the next 25 or more years to try to ease the gridlock issue in an initiative called "The Big Move.'

Introductory material for "The Big move" lists seven typical problems that result from gridlock:

  • You are stuck on a 400-series highway for two hours because of a traffic accident.
  • When a bus finally arrives it is over-crowded.
  • The train is 45 minutes late.
  • Because of traffic congestion, you are late picking up your child from day care.
  • The critical electrical part your company needs is held up in traffic.
  • Your commute, which used to take half an hour, now takes 45 minutes.

Sound familiar? As you consider this, do you see similarities in the wide area and local area networks supporting our business environments?

One can view networks as a highway (WAN) and city roads (LAN), with the "on and off" ramps the demarcation points where the two networks intersect. If a city and highway only had roads – with no other type of transportation options, getting people to/from their destination would be challenging and taxing on the infrastructure. In a network, typically LAN switches create a road-like infrastructure that allows virtual traffic to travel to its destination with many routes available, given a mesh-like topology similar to the roads of city. This infrastructure transports virtual traffic, however with increased user congestion, companies can experience bandwidth gridlock.

The Concept of Bandwidth

Bandwidth is about information that can flow through a network connection in a given period of time. It is important to understand the concept of bandwidth for the following reasons:

Bandwidth is finite. Regardless of the media used to build a network, there are limits on the network capacity to carry information. Bandwidth is limited by the laws of physics and by the technologies.

Bandwidth is not free. It is possible to buy equipment for a LAN that will provide seemingly unlimited bandwidth over a long period of time, however, this is not usually the reality.

Bandwidth is an important factor that is used to analyze network performance, design new networks, and understand the Internet. We must understand the tremendous impact of bandwidth and throughput on network performance and design. Information flows as a string of bits from device to device throughout our world.

The demand for bandwidth continues to grow. As soon as new network technology and infrastructures are built to provide greater bandwidth, new applications are created to take advantage of the greater capacity. The delivery of rich media content, such as streaming video and audio over a network, requires tremendous amounts of bandwidth. IP telephony systems are now commonly installed in place of traditional voice systems, which further adds to the need for bandwidth. Large events, such as football games, that occur on school campuses and introduce massive increase in wireless users can adversely affect our networks and our ability, in some cases, to access critical services. We must anticipate the need for increased bandwidth and act accordingly.

More Traffic, More Changes

Today, the IoT movement is resulting in many more endpoints being connected via the network. Some of these devices and applications have deterministic, always-on or real-time traffic patterns like video streaming from an IP surveillance camera or voice from an IP phone. These applications highlight any inefficiencies in the network infrastructure. To address these increasing demands, many take the approach of ripping and replacing the existing "road-like" infrastructure to make bigger systems to support more and more traffic. Imagine if every city tried to expand every road and street with HOV lanes. Physically and financially this would be impossible without leveling the existing infrastructure and starting from scratch.

In a legacy network environment, however, there is an alternative approach to a complete infrastructure do-over to support IP-based technology. Recent switching innovations have been introduced that leverage an existing, reliable infrastructure to create full IP paths with power ideal for supporting IP-enabled endpoints and applications – without the need to rip and replace infrastructure. These innovations are providing customers with the flexibility to design new networks using existing, proven reliable infrastructure to open up free-flowing communications and services that are easy to manage, eliminating pressure and congestion on the network's "highways and roads."

Before investing in costly infrastructure changes to support IP-enabled technology, consider re-energizing what is already working and in place to quickly and easily reach your IoT destination. Learn more: www.nvtphybridge.com.

Richard Kasslack is the Vice President for Strategic Accounts at Phybridge Inc. Phybridge Inc. is the Global leader in Long Reach Ethernet switching technologies delivering Power and Ethernet over a single pair UTP, Coax and multi-pair UTP, eliminating barriers to IP adoption.

Featured

  • Report: 47 Percent of Security Service Providers Are Not Yet Using AI or Automation Tools

    Trackforce, a provider of security workforce management platforms, today announced the launch of its 2025 Physical Security Operations Benchmark Report, an industry-first study that benchmarks both private security service providers and corporate security teams side by side. Based on a survey of over 300 security professionals across the globe, the report provides a comprehensive look at the state of physical security operations. Read Now

    • Guard Services
  • Identity Governance at the Crossroads of Complexity and Scale

    Modern enterprises are grappling with an increasing number of identities, both human and machine, across an ever-growing number of systems. They must also deal with increased operational demands, including faster onboarding, more scalable models, and tighter security enforcement. Navigating these ever-growing challenges with speed and accuracy requires a new approach to identity governance that is built for the future enterprise. Read Now

  • Eagle Eye Networks Launches AI Camera Gun Detection

    Eagle Eye Networks, a provider of cloud video surveillance, recently introduced Eagle Eye Gun Detection, a new layer of protection for schools and businesses that works with existing security cameras and infrastructure. Eagle Eye Networks is the first to build gun detection into its platform. Read Now

  • Report: AI is Supercharging Old-School Cybercriminal Tactics

    AI isn’t just transforming how we work. It’s reshaping how cybercriminals attack, with threat actors exploiting AI to mass produce malicious code loaders, steal browser credentials and accelerate cloud attacks, according to a new report from Elastic. Read Now

  • Pragmatism, Productivity, and the Push for Accountability in 2025-2026

    Every year, the security industry debates whether artificial intelligence is a disruption, an enabler, or a distraction. By 2025, that conversation matured, where AI became a working dimension in physical identity and access management (PIAM) programs. Observations from 2025 highlight this turning point in AI’s role in access control and define how security leaders are being distinguished based on how they apply it. Read Now

New Products

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities