Comparing Wireless Communication Protocols

Comparing Wireless Communication Protocols

Wi-Fi is a technology based on the IEEE 802.11 suite of standards that uses radio frequencies (RF) extend wired Ethernet-based local area networks (LAN) to Wi-Fi-enabled devices, allowing the devices to receive and send information from the internet.

How does it work? Wi-Fi uses Internet Protocol (IP) to communicate between endpoint devices and the LAN. A Wi-Fi connection is established using a wireless router that is connected to the network and allows devices to access the internet.

One disadvantage of Wi-Fi is that it may be prone to interference depending on the RF environment it’s operating in. Everything from other Wi-Fi signals to radio waves emitted by microwave ovens to cement walls can interfere with your data transmission. That’s where Wi-Fi’s two frequencies, 2.4GHz and 5GHz, come in. Wi-Fi can broadcast on both frequencies, helping its signal cut through all the noise and deliver a fast, strong signal from your wireless router to your device.

What applications is it best for? LAN video, e-mail, and web applications requiring higher data rate network connections (1Mbps-1Gbps).

LI-FI

What is it? Li-Fi is a form of visual light communication that sees light waves from LED bulbs for high-speed wireless communication. It is used to exchange data quickly and securely at a much lower power level compared to Wi-Fi.

How does it work? When a constant current source is applied to an LED bulb, it emits a constant stream of photons observed as visible light. When this current is varied slowly, the bulb dims up and down. Since the bulbs are semiconductors, the current and optical output can be modulated at extremely high speeds that can be detected by a photodetector device and converted back to electrical current.

Li-Fi has fewer interference issues than RF technology, making it ideal for dense environments where Wi-Fi may fall short. It can’t penetrate solid materials, which makes it more secure, but also means a Li-Fi network in a building would need multiple transmitter bulbs, so a mobile user could experience seamless wireless coverage as they move between the illumination area of each LED bulb.

What applications is it best for? Li-Fi is still a long way from widespread commercialization, but it has potential applications for the Internet of Things in many industries, including aerospace, education, consumer electronics, healthcare, retail, security and transportation.

BLUETOOTH

What is it? A standard for the short-range wireless interconnection of mobile phones, computers and other electronic devices.

How does it work? Bluetooth sends and receives radio waves in a band of 79 different frequencies (channels) centered on 2.45 GHz, set apart from radio, television and cellphones, and reserved for use by industrial, scientific and medical gadgets.

Bluetooth’s short-range transmitters have very low power consumption and are more secure than wireless networks that operate over longer ranges, such as Wi-Fi.

What applications is it best for? Bluetooth is a global 2.4 GHz personal area network for short-range wireless communication.

Device-to-device file transfers, mobile credentials, wireless speakers and wireless headsets are often enabled with Bluetooth.

ZIGBEE

What is it? ZigBee is a 2.4 GHz mesh local area network (LAN) protocol. It was developed as an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios.

How does it work? ZigBee devices transmit data over long distances by passing it through a mesh network of intermediate devices to reach more distant ones. ZigBee networks have a defined rate of 250 MBps and are secured by 128-bit symmetric encryption keys.

What applications is it best for? ZigBee is typically used in lowdata- rate applications that require high scalability, long battery life, and secure networking. It is simpler and less expensive than Bluetooth or Wi-Fi and is commonly used for home, building and industrial automation applications, such as controlled lighting and thermostats, home energy monitors, smart metering, medical device data collection, traffic management systems and other low-power, low-bandwidth needs.

This article originally appeared in the July/August 2018 issue of Security Today.

About the Author

Andrew Jimenez is the vice president of technology at Anixter.

Featured

  • Pragmatism, Productivity, and the Push for Accountability in 2025-2026

    Every year, the security industry debates whether artificial intelligence is a disruption, an enabler, or a distraction. By 2025, that conversation matured, where AI became a working dimension in physical identity and access management (PIAM) programs. Observations from 2025 highlight this turning point in AI’s role in access control and define how security leaders are being distinguished based on how they apply it. Read Now

  • Report: Cyber Attackers Continue to Turn to AI-Based Tools to Avoid Detection

    Comcast Business recently released its 2025 Cybersecurity Threat Report, a comprehensive analysis of 34.6 billion cybersecurity events detected between June 1,2024 and May 31, 2025. Now in its third year, the report offers business leaders a unique perspective into the evolving threat landscape and provides actionable insights to help organizations strengthen their defenses and align cybersecurity with business risk. Read Now

  • Axis Communications Creates AI-powered Video Surveillance Orchestra

    What if cameras could not only see the world, but interpret it—and respond like orchestra musicians reading sheet music: instantly, precisely, and in perfect harmony? That’s what global network technology leader Axis Communications set to find out. Read Now

  • Just as Expected

    GSX produced a wonderful tradeshow earlier this week. Monday was surprisingly strong in the morning, and the afternoon wasn’t bad at all. That’s Monday’s results and asking attendees to travel on Sunday. Just a quick hint, no one wants to give up their weekend to travel and set up an exhibit booth. I’m just saying. Read Now

    • Industry Events
    • GSX
  • NOLA: The Crescent City

    Twenty years later we finds ourselves in New Orleans. Twenty years ago the aftermath of Hurricane Katrina forced exhibitors and attendees to look elsewhere for tradeshow floor space. Read Now

    • Industry Events
    • GSX

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.