Comparing Wireless Communication Protocols

Wi-Fi is a technology based on the IEEE 802.11 suite of standards that uses radio frequencies (RF) extend wired Ethernet-based local area networks (LAN) to Wi-Fi-enabled devices, allowing the devices to receive and send information from the internet.

How does it work? Wi-Fi uses Internet Protocol (IP) to communicate between endpoint devices and the LAN. A Wi-Fi connection is established using a wireless router that is connected to the network and allows devices to access the internet.

One disadvantage of Wi-Fi is that it may be prone to interference depending on the RF environment it’s operating in. Everything from other Wi-Fi signals to radio waves emitted by microwave ovens to cement walls can interfere with your data transmission. That’s where Wi-Fi’s two frequencies, 2.4GHz and 5GHz, come in. Wi-Fi can broadcast on both frequencies, helping its signal cut through all the noise and deliver a fast, strong signal from your wireless router to your device.

What applications is it best for? LAN video, e-mail, and web applications requiring higher data rate network connections (1Mbps-1Gbps).

Li-Fi

What is it? Li-Fi is a form of visual light communication that sees light waves from LED bulbs for high-speed wireless communication. It is used to exchange data quickly and securely at a much lower power level compared to Wi-Fi.

How does it work? When a constant current source is applied to an LED bulb, it emits a constant stream of photons observed as visible light. When this current is varied slowly, the bulb dims up and down. Since the bulbs are semiconductors, the current and optical output can be modulated at extremely high speeds that can be detected by a photodetector device and converted back to electrical current.

Li-Fi has fewer interference issues than RF technology, making it ideal for dense environments where Wi-Fi may fall short. It can’t penetrate solid materials, which makes it more secure, but also means a Li-Fi network in a building would need multiple transmitter bulbs, so a mobile user could experience seamless wireless coverage as they move between the illumination area of each LED bulb.

What applications is it best for? Li-Fi is still a long way from widespread commercialization, but it has potential applications for the Internet of Things in many industries, including aerospace, education, consumer electronics, healthcare, retail, security and transportation.

Bluetooth

What is it? A standard for the short-range wireless interconnection of mobile phones, computers and other electronic devices.

How does it work? Bluetooth sends and receives radio waves in a band of 79 different frequencies (channels) centered on 2.45 GHz, set apart from radio, television and cellphones, and reserved for use by industrial, scientific and medical gadgets.

Bluetooth’s short-range transmitters have very low power consumption and are more secure than wireless networks that operate over longer ranges, such as Wi-Fi.

What applications is it best for? Bluetooth is a global 2.4 GHz personal area network for short-range wireless communication.

Device-to-device file transfers, mobile credentials, wireless speakers and wireless headsets are often enabled with Bluetooth.

ZigBee

What is it? ZigBee is a 2.4 GHz mesh local area network (LAN) protocol. It was developed as an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios.

How does it work? ZigBee devices transmit data over long distances by passing it through a mesh network of intermediate devices to reach more distant ones. ZigBee networks have a defined rate of 250 MBps and are secured by 128-bit symmetric encryption keys.

What applications is it best for? ZigBee is typically used in lowdata- rate applications that require high scalability, long battery life, and secure networking. It is simpler and less expensive than Bluetooth or Wi-Fi and is commonly used for home, building and industrial automation applications, such as controlled lighting and thermostats, home energy monitors, smart metering, medical device data collection, traffic management systems and other low-power, low-bandwidth needs.

This article originally appeared in the September 2018 issue of Security Today.

About the Author

Andrew Jimenez is the vice president of technology at Anixter.

Featured

  • Gaining a Competitive Edge

    Ask most companies about their future technology plans and the answers will most likely include AI. Then ask how they plan to deploy it, and that is where the responses may start to vary. Every company has unique surveillance requirements that are based on market focus, scale, scope, risk tolerance, geographic area and, of course, budget. Those factors all play a role in deciding how to configure a surveillance system, and how to effectively implement technologies like AI. Read Now

  • 6 Ways Security Awareness Training Empowers Human Risk Management

    Organizations are realizing that their greatest vulnerability often comes from within – their own people. Human error remains a significant factor in cybersecurity breaches, making it imperative for organizations to address human risk effectively. As a result, security awareness training (SAT) has emerged as a cornerstone in this endeavor because it offers a multifaceted approach to managing human risk. Read Now

  • The Stage is Set

    The security industry spans the entire globe, with manufacturers, developers and suppliers on every continent (well, almost—sorry, Antarctica). That means when regulations pop up in one area, they often have a ripple effect that impacts the entire supply chain. Recent data privacy regulations like GDPR in Europe and CPRA in California made waves when they first went into effect, forcing businesses to change the way they approach data collection and storage to continue operating in those markets. Even highly specific regulations like the U.S.’s National Defense Authorization Act (NDAA) can have international reverberations – and this growing volume of legislation has continued to affect global supply chains in a variety of different ways. Read Now

  • Access Control Technology

    As we move swiftly toward the end of 2024, the security industry is looking at the trends in play, what might be on the horizon, and how they will impact business opportunities and projections. Read Now

Featured Cybersecurity

Webinars

New Products

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction. 3

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions. 3

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings. 3