Industry Professional

Transitioning from Video to Vision

IP-based digital capabilities have surpassed quality and edge processing capabilities

In recent years, video surveillance has experienced a constant and rapid evolution of both technology and use cases for IP video in the traditional life safety and loss prevention worlds. IP-based digital video capabilities have far surpassed predecessor analog video systems in terms of both video quality and edge processing capabilities such as recording, onboard analytics and more. These advances have allowed the industry to prioritize and focus on more useful video monitoring and recordings based on items of interest, rather than blanket recordings and time-consuming post-recording searches. Based on the added intelligence, use cases well beyond traditional physical security have been developing and are on the cusp of rapid adoption of non-traditional uses for network video.

In the context of digital or networked video, the more common terms we hear used are machine vision and computer vision. The distinction between the two is that the camera is keyed in on monitoring specific conditions, processes or items to look for anomalies, such as a paint defects early in an automotive manufacturing process, or ensuring the right pills are put in the right prescription bottle based on visual verification in an automated prescription fulfilment process. We are also hearing the term vision being associated with the terms deep learning and artificial intelligence (AI).

Somewhere in the space between traditional video surveillance applications and the promise of deep learning or AI, we are seeing increasing deployments of smart systems, such as smart buildings, smart parking and smart cities. The two examples detailed below illustrate the potential power of video surveillance for providing deeper vision when integrated into these types of applications.

Smart Parking

Smart parking is a prime example of the evolution of this vision applied on top of traditional automation systems to increase communications, efficiencies and profitability by augmenting available data. A snapshot of smart parking without video would look something like this:

Automated entry gate to provide access and a ticket to track parking duration for billing. Potentially parking space-specific weight sensors to determine which spaces are occupied. Potentially more generalized pressure plates to count the number of vehicles entering or exiting zones or parking levels to estimate the number of available parking spaces. Exit gate with staffed and/or automated pay stations.

What we are now seeing is a vision overlay added to these nonvisual systems, which provides added benefits. For example, video overlay of parking spaces can allow for reservation of specific spaces, as well as license plate recognition (LPR) of the vehicle for which the space has been reserved. This can allow for tiered pricing based on space location and can tie in to retail VIP or loyalty programs, providing automatic notification to a retailer that a special customer has arrived.

Additionally, LPR can be used at ingress points to identify entry attempts by undesirable or blacklisted vehicles. Video can also be used to identify vehicles that have parked in a manner that eliminates the usability of an adjacent parking space.

It is important to note that edge intelligence like LPR capability enables the recognition and transmission of key data points without the need to transmit more exhaustive and very dense video traffic. The increased efficiencies can be apparent and especially valuable when tied in to a range of non-video sensors.

Largely depending on the environment for this use case, traditional forensic video used to track theft, accidents and pedestrian incidents are still attractive and valuable. As an industry, we are also starting to see increased traction in adding additional video and audio analytics to this architecture. These may include audio alerts in an area of interest and automated alerts to security staff, police and other first responders.

Smart Lighting

Another area where we are seeing video transition to vision in nontraditional applications is the integration of video camera with smart street lighting. Smart street lighting has seen a widespread increase in integrated network communications based on technologies such as cellular, Wi-Fi, wired connection and other low-bandwidth wireless technologies such as ZigBee, Z-Wave, LORA and others.

The base need for these integrated technologies is to provide twoway communication to control the lighting by turning it on or off based on ambient levels, as well as to collect data from the lights, including power usage and event trigger information—was the light turned on based on motion, and if so, how often? You will now find that many of the top street lighting manufacturers are not only embedding the communications equipment but are also adding a measure of IP video cameras. The promise of integrated video is the ability to create additional services similar to those referenced in the smart parking example, but also potential traffic analytics, such as a vehicle in a bike lane, illegal parking, traffic flow monitoring, accident detection and much more.

Smart parking and smart lighting are just two examples of use cases where video is serving more as a vision sensor and data collection technology. This is in addition to traditional video use cases or exclusive of recorded video used solely to track event-based data and report these data points back to a larger overall system. From these brief glimpses of how video can transition to vision, potential extrapolations from these use cases should immediately become clear.

For example, there is the promise of larger cloud-based learning systems that can collect vast amounts of disparate data points, including vision-based data in real time, and provide instantaneous status and reporting on baseline anomalies. As a result, video surveillance is moving from real-time reactive systems closer to more predictive systems that can be deployed to solve operational challenges while also helping organizations to mitigate, if not avoid, potential security threats.

This article originally appeared in the September 2018 issue of Security Today.

Featured

  • TSA Intercepts 6,678 Firearms at Airport Security Checkpoints in 2024

    During 2024, the Transportation Security Administration (TSA) intercepted a total of 6,678 firearms at airport security checkpoints, preventing them from getting into the secure areas of the airport and onboard aircraft. Approximately 94% of these firearms were loaded. This total is a minor decrease from the 6,737 firearms stopped in 2023. Throughout 2024, TSA managed its “Prepare, Pack, Declare” public awareness campaign to explain the steps for safely traveling with a firearm. Read Now

  • 2024 Gun Violence Report: Fewer Overall Incidents, but School Deaths and Injuries Are on the Rise

    Omnilert, provider of gun detection technology, today released its compilation of Gun Violence Statistics for 2024 summarizing gun violence tragedies and their adverse effects on Americans and the economy. While research showed a decrease in overall deaths and injuries, the rising number of school shootings and fatalities and high number of mass shootings underscored the need to keep more people safe in schools as well as places of worship, healthcare, government, retail and commerce, finance and banking, hospitality and other public places. Read Now

  • Survey: Only 7 Percent of Business Leaders Using AI in Physical Security

    A new survey from Pro-Vigil looks at video surveillance trends, how AI is impacting physical security, and more. Read Now

  • MetLife Stadium Uses Custom Surveillance Solution from Axis Communications

    Axis Communications, provider of video surveillance and network devices, today announced the implementation of a custom surveillance solution developed in collaboration with the MetLife Stadium security team. This new, tailored solution will help the venue augment its security capabilities, providing high-quality video at unprecedented distances and allowing the security team to identify details from anywhere in the venue. Read Now

Featured Cybersecurity

Webinars

New Products

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file. 3

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises. 3

  • Compact IP Video Intercom

    Viking’s X-205 Series of intercoms provide HD IP video and two-way voice communication - all wrapped up in an attractive compact chassis. 3