Are Your Linux Servers Really Protected?

Are Your Linux Servers Really Protected?

It’s often thought that because the servers are behind lock and key and/or in a data center, and because the data is in continuous use, encrypting the server drives isn’t needed since the data is never at-rest.

When thinking about IT security, one area that may not readily come to mind is the physical security of an enterprise’s servers. It’s often thought that because the servers are behind lock and key and/or in a data center, and because the data is in continuous use, encrypting the server drives isn’t needed since the data is never at-rest.

That thinking presents a significant potential problem, though. Eventually, all drives need to be repaired or disposed of and must leave the data center. Having them encrypted is the best way to protect the data on them from accidental – or potentially not accidental – exposure. Adding to that, given the seemingly never-ending amount of breaches in the news and compliance regulations like GDPR, HIPAA and those of all 50 states, the wise advice is to encrypt everything, everywhere, all the time.

If you have Linux servers, you may think you are protected since Linux has built in encryption for several years now. But, that may not in fact be the case. Why is that?

Following are the disk encryption capabilities built into Linux:

dm-crypt

dm-crypt is a transparent disk encryption subsystem within the Linux kernel. It is a block device-based abstraction that can be inserted on top of other block devices, like disks. It is, therefore, an ideal technology to be used for full disk encryption (FDE). The actual encryption is not built into dm-crypt, but rather it utilizes cryptographic routines (e.g., AES) from the kernel’s Crypto API.

LUKS

LUKS (Linux Unified Key Setup) is a disk encryption specification that details a platform-independent standard on-disk format for use in various tools (e.g., a standard encryption header), which provides the basis for implementing password management. LUKS operates on Linux and is based on an enhanced version of cryptsetup that uses dm-crypt as the disk encryption backend.

Together, dm-crypt and LUKS form the foundation for a simple, “standalone” password authenticated FDE application. However, this is not an enterprise grade solution.

The problem is, the Linux native FDE leaves gaps in data protection, including:

• No centralized password, key management and backup of an encrypted server.

• Difficult root volume encryption leaving room for errors.

• No straightforward way to crypto-erase a comprised drive.

• No consolidated compliance view of encrypted devices to prove all servers’ encryption states.

The lack of management and compliance capabilities built into Linux servers have caused enterprises to struggle with their encryption and data protection efforts.

So how can businesses with Linux servers best address this? They should look for solutions that contain the following features and functionality:

Separation of Encryption and Key Management

To be most effective, an encryption product should be separated into two components – encryption and key management -- because the expertise to deliver these two components is quite different. For extra protection, consider solutions that layer on top of dm-crypt rather than replacing it to better cohesively manage encryption.

Robust Authentication

With so much focus today on identity and access control, it’s important to have an encryption solution that can provide more robust authentication of servers to ensure that your data is safe from harm. Pre-boot network-based authentication can provide this, bolstering security before the operating system boots.

Simple Way to Ensure Root and Data Volume Encryption and Crypto-Erase a Compromised Drive

Root volume encryption, data volume encryption and encrypting swap partition are all needed for security and compliance. Look for solutions that enable this in a simple manner. Also, the solutions should have a simple mechanism to cryptographically erase all data when a drive is compromised, or it is to be repurposed. This operation must also be recorded for compliance reasons.

Centralized Compliance View and Management of Encrypted Devices, Keys and Recovery Information

With this type of visibility, you can see if a Linux server in your organization is encrypted and compliant with your encryption policy. The server would communicate its encryption status (for all disks) to a central console. Thereby, if a server goes missing, the IT department would have proof of its encryption state for auditors. Also, overall password recovery, operations and management of an encrypted Linux server from a central console is essential. The console should also be able to provide central backup of the encryption keys and recovery information.

Having a seamless and integrated encryption solution for servers, including for Linux servers, is essential. With the types of functionality listed above, organizations will be best positioned to protect the confidential information they hold – and meet the requirements of the ever-growing list of compliance regulations – should a data breach take place.

Featured

  • Security Today Announces 2025 CyberSecured Award Winners

    Security Today is pleased to announce the 2025 CyberSecured Awards winners. Sixteen companies are being recognized this year for their network products and other cybersecurity initiatives that secure our world today. Read Now

  • Empowering and Securing a Mobile Workforce

    What happens when technology lets you work anywhere – but exposes you to security threats everywhere? This is the reality of modern work. No longer tethered to desks, work happens everywhere – in the office, from home, on the road, and in countless locations in between. Read Now

  • TSA Introduces New $45 Fee Option for Travelers Without REAL ID Starting February 1

    The Transportation Security Administration (TSA) announced today that it will refer all passengers who do not present an acceptable form of ID and still want to fly an option to pay a $45 fee to use a modernized alternative identity verification system, TSA Confirm.ID, to establish identity at security checkpoints beginning on February 1, 2026. Read Now

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

New Products

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.