Reshaping the Perimeter

Developing the basics of deter, detect, delay and deny

Driven by the 2013 physical assault on a California substation, the NERC CIP 14 regulation has reshaped the way energy’s physical security directors are viewing perimeter security. The NERC requirements for protecting the Bulk Electric System (BES) have dealt the sector a deadline with a litany of possible answers for assets but, no one solution set fits all the needs. As a result, security directors are now tasked with reviewing a multitude of security options to enhance a site’s physical perimeter in order to find solutions that not only fit the NERC CIP 14 guidelines, but also fall within their budget requirements.

The Learning Curve

The ever-evolving landscape of security needs puts the electrical energy sector in a steep learning curve on how to establish an effective, robust and holistic security program with a realistic budget that is palatable throughout the organization to the C-Suite level. On the bright side for the security executive, there are companies, like ours, that have the ability to help coordinate those needs and provide that holistic approach. They can take an unsecured site from initial security assessment through completion.

Developing a program that addresses the basics of deter, detect, delay and deny has many more options than it did in the past, as security on the perimeter has made marked improvements in technology over the years, including camera analytics, radar and fence-mounted intrusion detection systems. These systems are designed to give advanced warning of an intruder breaching the perimeter. As these technologies continue to get more efficient, fencing manufactures are also bringing new, more delay-driven products to the marketplace. The layering of these products by companies taking a holistic approach will help the decision process on what systems to use and where to deploy them based on the design basis threat (DBT) and assessed adversary task time.

The new broader view of perimeter security has also led to ASTM standards playing a larger role in making decisions on the development of the overall security strategy/posture. The energy sector is largely acquainted with organizations like NIST & ANSI but the ASTM Standards have been somewhat overlooked from the physical side of the vertical. ASTM is an internationally recognized publisher of standards made up of consumers, manufacturers, academics and consultants. ASTM has more than 12,800 published standards and is recognized and accepted by many federal, state and municipal organizations globally as well as the electrical sector.

One of the key standards being recognized, but somewhat underused in the energy industry, is the ASTM F2718-18 Standard Practice for Testing Forced Entry, Ballistic and Low Impact Resistance of Security Fence Systems. This is a unique standard that encapsulates three aspects of physical security. These aspects include testing the ability of two assailants to breach a perimeter with three levels of tool sets ranging from low to aggressive. Examples of the applicable tools are a hacksaw for low, a 20-inch bolt cutter for medium and an oxyacetylene torch for aggressive.

The ballistic specification lays out the testing of three different types of ammunition that include the .38 special handgun (158 Grain-Lead Round Nose), .308 (147 Grain-Full Metal Casing) and 7.62 (U.S. Mil Spec-Steel Jacketed). The pass/fail criteria for the ballistic test is in accordance with the MIL-STD 662F (military ballistic test for armor) and NIJ Standard 0108.01. The low impact resistance of security fence systems is a low-speed test performed at 20 mph by a 4,000-pound bogie vehicle with a 6-inch by 42-inch bumper that is 24 inches off the ground.

Another of the ASTM Specifications being more widely used is the ASTM F2656-18 Standard Test Method for Crash Testing of Vehicle Security Barriers. This standard was taken over from the State Department in 2007 by the U.S. Army Corp of Engineers due to manufacturers’ rush to market after the 9/11 attacks.

Prior to 2007 (1985-2007), the DOS’ Bureau of Diplomatic Security handled the testing and certification of the vehicle security barriers. The results of those tests had what you will still see today as K-Ratings with L-Penetrations. DOS only tested 15,000-pound vehicles so you only had one designation that was tested. The tested and certified rating were as follows: K4 (15,000-pound vehicle traveling 30 mph), K8 (15,000-pound vehicle traveling 40 mph), K12 (15,000-pound vehicle traveling 50 mph). The penetration ratings for these ratings are L3 (0- 3.3 feet), L2 (3.3 feet to 20 feet), L1 (20.1 feet to 50 feet). You still see these ratings today specified in projects but are not the most current.

After 2001, the demand for crash-tested barriers rose dramatically and manufactures began to test and request certification at a rate never seen before, hence the move to the USACE for the new ASTM certification. ASTM F2656-18 encompasses a range of vehicles from something as small as a passenger car weighing 2,430-pounds traveling at tested speeds of 30 mph, 40 mph and 50 mph up to a 65,000-pound vehicle traveling 30 mph, 40 mph and 50 mph. Also included in the result of the test is a penetration rating. These ratings are taken from different points of reference on the differing vehicles and barriers tested and are thoroughly outlined in the specification. The penetration ratings are P1 (0-3.3 feet or 1 meter), P2 (3.31 feet to 23feet, or 1.01 meter to 7 meters), P3 (23.1 feet to 98.4 feet, or 7.01 meters to 30 meters). The full list of tested and certified barriers is maintained on the USACE’s website.

For those managing utility sites, protection from threat that could compromise supply or staff is paramount. Perimeter security is the foundation to any complete system, but ensuring compliance at this level is only beneficial as part of a holistic approach to overall security with seamless protection. An expert solutions provider can lead on this for you, ensuring your security system is not only up to code, but has complete interoperability.

This article originally appeared in the November/December 2019 issue of Security Today.

Featured

  • Unlocking the Possibilities

    Security needs continue to evolve and end users are under pressure to address emerging risks and safety concerns. For many, that focus starts with upgrading perimeter openings and layering technologies—beginning at the door. Read Now

  • Freedom of Choice

    In today's security landscape, we are witnessing a fundamental transformation in how organizations manage digital evidence. Law enforcement agencies, campus security teams, and large facility operators face increasingly complex challenges with expanding video data, tightening budget constraints and inflexible systems that limit innovation. Read Now

  • Accelerating a Pathway

    There is a new trend touting the transformational qualities of AI’s ability to deliver actionable data and predictive analysis that in many instances, seems to be a bit of an overpromise. The reality is that very few solutions in the cyber-physical security (CPS) space live up to this high expectation with the one exception being the new generation of Physical Identity and Access Management (PIAM) software – herein recategorized as PIAM+. Read Now

  • Protecting Your Zones

    It is game day. You can feel the crowd’s energy. In the parking lot. At the gate. In the stadium. On the concourse. Fans are eager to party. Food and merchandise vendors ready themselves for the rush. Read Now

  • Street Smarts

    The ongoing acceptance of AI and advanced data analytics has allowed surveillance camera technology to shift from being a tactical tool to a strategic business solution. Combining traditional surveillance technology with AI-based data-driven insights can streamline transportation systems, enhance traffic management, improve situational awareness, optimize resource allocation and streamline emergency response procedures. Read Now

New Products

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.