A Lesson on Wireless

Wireless locking systems offer flexible, innovative integration options at the University of Albany

ESTABLISHED in 1844 and designated a University Center of the State University of New York in 1962, the University of Albany's broad mission of excellence in undergraduate and graduate education, research and public service engages 17,000 diverse students in nine schools and colleges across three campuses.

The uptown campus is said to be the second-largest concrete structure in the United States, after the Pentagon. When the university sought to upgrade and expand its magnetic stripe-based locking system, its thick concrete walls made it cost prohibitive to hardwire the campus after the fact. The university investigated many options and ultimately chose to go wireless.

Fact is, wireless locks are a natural fit. They make the most sense for replacement and expansion. There is a tremendous cost savings in both labor and time.

Without the Wire
There is a reason that wireless or RF online locking systems are one of the fastest growing implementations in access control. Officials at the university discovered, that these solutions seamlessly integrate into the access control panel, eliminating wire between the lock and the access control panel, and providing a complete solution at each opening.

Wireless locking systems provide the same online, real-time capabilities as wired systems. Access privileges can be added or changed at the central control terminal, all from a common database, which simplifies data entry and management. There is no need to tour the building to reprogram locks or download transaction logs and audit trails. All events are recorded in real time by the host access control system. In addition, all wireless transmissions are encoded using 128-bit private keys for heightened security versus traditional wired installations.

Wireless systems also easily integrate into any existing access control system, such as the Diebold system used at Albany, which means the university did not have to replace its existing keys or ID credentials.

Wireless systems typically operate up to 200 feet between the door and the panel interface module (PIM) for indoor applications. What's especially important, there is no need for line of sight. Signals are able to penetrate concrete or cinder block walls, plasterboard walls, brick walls and many other non-metallic materials for simplified system designs and implementations. Wireless systems work on wood and metal doors, both exterior and interior, as well as glass, monitored and scheduled doors, gates, elevators and in portable solutions.

For on-campus security personnel, wireless locking systems offer an opportunity to solve problems that might once have been impossible or impractical.

Better Than Predicted
At the University at Albany, officials first heard about wireless access solutions two years ago and felt from the beginning that it would be a part of the future access control system. They decided to start with two wireless pilot projects last summer, chosing a residence hall and the humanities building, using Schlage locks on both projects.

The residence halls are made up of four large quads on the main campus, and each quad has eight buildings. The front door has always had card access, but the school wanted to install card access on the remaining doors, as well.

Prescription: HandReaders for Security

Aspirus Wausau Hospital in Wausau, Wis., serves the healthcare needs of residents of Wausau and a 12-county region from the northern and central part of the state. In order to increase security and ensure that only authorized people access hospital grounds, the hospital has deployed 50 biometric HandReaders at key entry and exit points.

More than 3,000 Aspirus Wausau employees are enrolled with the HandReaders that automatically take a three-dimensional reading of the size and shape of a hand, and verify the user?s identity in less than one second.

"We chose biometrics because of the high cost of using access control cards," said Greg Pehlke, security supervisor for the hospital. "We were spending $2,000 a month on smart cards with computer chips, which employees were simply loaning to unauthorized individuals. Much of this cost and the security breaches have been eliminated with the HandReaders."

Aspirus Wausau Hospital's previous card-based system had reached full capacity and it would frequently freeze up. During the transition to biometric access control, the hospital had a dual system running with both card and HandReaders. Now, however, the hospital is using only HandReaders for access control.

The hospital's 50 HandReaders, including rugged outdoor models designed to handle the inclement weather of northern Wisconsin, control access to the hospital. The front entrance is locked down after visiting hours and only authorized people can enter at that point. The HandReaders are networked, and all security systems are monitored from the security department's dispatch center.

Hospital officials have found hand geometry to be more reliable than other biometric technologies they researched, Pehlke said. There are fewer false reads with HandReaders and fingerprint scanners just don't work for large user populations.

The hospital will be adding six new readers this year. More departments are requesting the HandReaders so that they can eliminate keys and increase security, Pehlke said.

It started with wireless locks for the two outside doors. University officials appreciate that they don't have to wire for data or power since the units are battery operated. The key shop can do 90 percent of the installation. The two outside doors were installed in an afternoon and the only reason it took that long is because they were using a crash bar as opposed to a regular lock.

The wireless pilot project at the humanities building was similarly successful. That building had converted to "smart classrooms" with a lot of high-tech equipment, which was left largely unattended in the evenings.

To prevent vandalism and theft, the humanities department wanted to add door access to individual classrooms. Again, because wiring was deemed too expensive, wireless locking system were recommended. The wireless locks were installed without a hitch on 18 doors.

Since the initial wireless pilot projects, four doors to "smart classrooms" in the arts & sciences building have been switched to wireless locks. The earth science building has six to eight doors to be converted to wireless over the summer, and the residence halls have eight more to go wireless. Interest in the wireless locks also extends to the university's computer center. Beta testing also is taking place in the campus athletic facility with the goal of using fewer keys there.

With the wireless locking systems, classroom doors can now lock automatically and unlock in the morning to admit faculty. Deans and heads of departments at the University at Albany say the locks give them peace of mind and also have reduced thefts.

The wireless locks have proven to be an improvement over their predecessors, and the university is currently testing a wireless panel interface module, as well.

There was some concern that there might have trouble transmitting through the walls with the wireless system. It has actually worked better than predicted.

A Wireless Future for the University
The multi-function magnetic stripe cards currently issued to students and faculty at the University at Albany are used for identification, on-campus purchases, checking out books from the library, meal plans, and debit cards and at select off-campus stores. They are integrated into nearly every aspect of life on campus, but are critical for access control.

Schlage's wireless locks have given officials the capability to expand card access. The equipment is aging, and the wireless locking systems provide a migration plan. So far, it has been an anticipated smooth transition.

Wireless installations, such as that used at the university, demonstrate that a wireless solution can have a substantially lower installed cost than its wired alternative since wireless systems use less hardware and install five to 10 times faster. Retrofitting electronic access control systems is now made easy and affordable, especially in situations where it might have once seemed impossible.

Featured

  • Video Surveillance Trends to Watch

    With more organizations adding newer capabilities to their surveillance systems, it’s always important to remember the “basics” of system configuration and deployment, as well as the topline benefits of continually emerging technologies like AI and the cloud. Read Now

  • New Report Reveals Top Trends Transforming Access Controller Technology

    Mercury Security, a provider in access control hardware and open platform solutions, has published its Trends in Access Controllers Report, based on a survey of over 450 security professionals across North America and Europe. The findings highlight the controller’s vital role in a physical access control system (PACS), where the device not only enforces access policies but also connects with readers to verify user credentials—ranging from ID badges to biometrics and mobile identities. With 72% of respondents identifying the controller as a critical or important factor in PACS design, the report underscores how the choice of controller platform has become a strategic decision for today’s security leaders. Read Now

  • Overwhelming Majority of CISOs Anticipate Surge in Cyber Attacks Over the Next Three Years

    An overwhelming 98% of chief information security officers (CISOs) expect a surge in cyber attacks over the next three years as organizations face an increasingly complex and artificial intelligence (AI)-driven digital threat landscape. This is according to new research conducted among 300 CISOs, chief information officers (CIOs), and senior IT professionals by CSC1, the leading provider of enterprise-class domain and domain name system (DNS) security. Read Now

  • ASIS International Introduces New ANSI-Approved Investigations Standard

    • Guard Services
  • Cloud Security Alliance Brings AI-Assisted Auditing to Cloud Computing

    The Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment, today introduced an innovative addition to its suite of Security, Trust, Assurance and Risk (STAR) Registry assessments with the launch of Valid-AI-ted, an AI-powered, automated validation system. The new tool provides an automated quality check of assurance information of STAR Level 1 self-assessments using state-of-the-art LLM technology. Read Now

New Products

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.