"Liquid Pistons" Could Help Drive Advances In Camera Lenses

A few unassuming drops of liquid locked in a very precise game of “follow the leader” could one day be found in mobile phone cameras, medical imaging equipment, implantable drug delivery devices, and even implantable eye lenses.

Engineering researchers at Rensselaer Polytechnic Institute have developed liquid pistons, in which oscillating droplets of ferrofluid precisely displace a surrounding liquid. The pulsating motion of the ferrofluid droplets, which are saturated with metal nanoparticles, can be used to pump small volumes of liquid. The study also demonstrated how droplets can function as liquid lenses that constantly move, bringing objects into and out of focus.

These liquid pistons are highly tunable, scalable, and -- because they lack any solid moving parts -- suffer no wear and tear. The research team, led by Rensselaer Professor Amir H. Hirsa, is confident this new discovery can be exploited to create a host of new devices ranging from micro displacement pumps and liquid switches, to adaptive lenses and advanced drug delivery systems.

“It is possible to make mechanical pumps that are small enough for use in lab-on-a-chip applications, but it’s a very complex, expensive proposition,” said Hirsa, a professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer. “Our electromagnetic liquid pistons present a new strategy for tackling the challenge of microscale liquid pumping. Additionally, we have shown how these pistons are well-suited for chip-level, fast-acting adaptive liquid lenses.”

Results of the study are detailed in the paper “Electromagnetic liquid pistons for capillarity-based pumping,” recently published online by the journal Lab on a Chip. The paper will be featured on the cover of the journal’s February 2011 issue, and can be read online at: http://xlink.rsc.org/?DOI=c0lc00397b.

See a video of the liquid piston in action at: http://www.youtube.com/watch?v=ms-_NT3eb4I.

Hirsa’s team developed a liquid piston that is comprised of two ferrofluid droplets situated on a substrate about the size of a piece of chewing gum. The substrate has two holes in it, each hosting one of the droplets. The entire device is situated in a chamber filled with water.

Pulses from an electromagnet provoke one of the ferrofluid droplets, the driver, to vibrate back and forth. This vibration, in turn, prompts a combination of magnetic, capillary, and inertial forces that cause the second droplet to vibrate in an inverted pattern. The two droplets create a piston, resonating back and forth with great speed and a spring-like force. Researchers can finely control the strength and speed of these vibrations by exposing the driver ferrofluid to different magnetic fields.

In this way, the droplets become a liquid resonator, capable of moving the surrounding liquid back and forth from one chamber to another. Similarly, the liquid piston can also function as a pump. The shift in volume, as a droplet moves, can displace from the chamber an equal volume of the surrounding liquid. Hirsa said he can envision the liquid piston integrated into an implantable device that very accurately releases tiny, timed doses of drugs into the body of a patient.

As the droplets vibrate, their shape is always changing. By passing light through these droplets, the device is transformed into a miniature camera lens. As the droplets move back and forth, the lens automatically changes its focal length, eliminating the usual chore of manually focusing a camera on a specific object. The images are captured electronically, so software can be used to edit out any unfocused frames, leaving the user with a stream of clear, focused video.

The speed and quality of video captured from these liquid lenses has surpassed 30 hertz, which is about the quality of a typical computer web cam. Liquid lenses could mean lighter camera lenses that require only a fraction of the energy demanded by today’s digital cameras. Along with handheld and other electronic devices, and homeland security applications, Hirsa said this technology could even hold the key to replacement eye lenses that can be fine-tuned using only high-powered magnets.

“There’s really a lot we can do with these liquid pistons. It’s an exciting new technology with great potential, and we’re looking forward to moving the project even further along,” he said.

Along with Hirsa, co-authors on the paper are Rensselaer doctoral graduates Bernard Malouin Jr., now with MIT’s Lincoln Laboratory; and Michael Vogel, a private research consultant; Rensselaer mechanical engineering doctoral student Joseph Olles; and former postdoctoral researcher Lili Cheng, now with General Electric Global Research.

This study was supported with funding from the Defense Advanced Research Projects Agency (DARPA).

 

Featured

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

  • Survey: 48 Percent of Worshippers Feel Less Safe Attending In-Person Services

    Almost half (48%) of those who attend religious services say they feel less safe attending in-person due to rising acts of violence at places of worship. In fact, 39% report these safety concerns have led them to change how often they attend in-person services, according to new research from Verkada conducted online by The Harris Poll among 1,123 U.S. adults who attend a religious service or event at least once a month. Read Now

New Products

  • EasyGate SPT and SPD

    EasyGate SPT SPD

    Security solutions do not have to be ordinary, let alone unattractive. Having renewed their best-selling speed gates, Cominfo has once again demonstrated their Art of Security philosophy in practice — and confirmed their position as an industry-leading manufacturers of premium speed gates and turnstiles.

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • Camden CM-221 Series Switches

    Camden CM-221 Series Switches

    Camden Door Controls is pleased to announce that, in response to soaring customer demand, it has expanded its range of ValueWave™ no-touch switches to include a narrow (slimline) version with manual override. This override button is designed to provide additional assurance that the request to exit switch will open a door, even if the no-touch sensor fails to operate. This new slimline switch also features a heavy gauge stainless steel faceplate, a red/green illuminated light ring, and is IP65 rated, making it ideal for indoor or outdoor use as part of an automatic door or access control system. ValueWave™ no-touch switches are designed for easy installation and trouble-free service in high traffic applications. In addition to this narrow version, the CM-221 & CM-222 Series switches are available in a range of other models with single and double gang heavy-gauge stainless steel faceplates and include illuminated light rings.