Upgrading To A New Era

Keeping the ever-increasing demand for anytime, anywhere data under control

The recent eruption of mobile applications coupled with increasing IP-based data traffic on mobile devices is fueling the uptake of 4G technologies and driving the migration to faster data rates. In order to allow an all-IP-based services platform, service providers are upgrading existing networks and migration strategies. Both handset vendors and carriers are busy rolling out application portals in order to differentiate their offerings and provide better monetization and ARPU. The increasing trend for “anywhere, anytime” data technology is pushed by user mobility and subscriber need.

The move to mobile connectivity and mobile broadband, and more overall data traffic, is powering this expansion. Subscribers are dictating what applications they want to use and where they want to use them. This is pushing operators to move to an all-IP core by reducing network complexity and lowering costs.

With this much network transformation, the migration won’t happen overnight. Network operators still need to support a hybrid network for the foreseeable future, interconnecting next-generation systems and devices with the various types of existing platforms. The future of the network is becoming more complex, and the journey toward a converged all-IP network brings a whole new set of network performance and management guidelines to be implemented by IT organizations. Real-time network troubleshooting, monitoring and provisioning must be implemented strategically, as they are driven by the ever-important need to maintain and manage the subscriber experience.

Real-time monitoring of network traffic has proven to be particularly important for analyzing and diagnosing network performance and, consequently, the subscriber’s quality of experience (QoE).

Legacy Tools Fall Short of Real-Time Monitoring Needs

Performance and complexity problems are only made worse by fragmented monitoring approaches. The constant push for more efficient connectivity is leaving traditional approaches toward network monitoring incapable of managing network components on service provider and enterprise infrastructures. The accumulation of outdated network monitoring components coupled with the growing complexity of data on the network is causing several major problems.

Traditionally, placing a host of tools into the network was the solution to improving visibility of network performance. While this strategy does solve some problems, it introduces others. The inability to access a particular point in a network with multiple tools is often considered the biggest challenge IT managers face. This limitation, combined with the type of overhead management used in legacy monitoring schemes, creates a network “blind spot” and makes troubleshooting inefficient because there often are different sets of tools scattered across the network in different physical locations, each with individual management software that is inoperable with the software of other vendors.

Monitoring costs become increasingly expensive as network management becomes more inefficient and network engineers have limited accessibility to certain points in the network yet still have to manage an immense overflow of data. Reduced ROI and increased costs from the lack of fast and efficient troubleshooting is impacting revenues across the board—and adding performance and complexity problems.

Smarter Solutions: The Economics of Network Intelligence Optimization

Network operators—especially those in the telecom, enterprise or government industries—must carefully consider the price-performance, agility, diversity and intelligent capabilities of a traffic capture solution before making a decision. They must develop a complete and forward-looking strategy for network monitoring and management. There are a rising number of macro trends that, depending on future requirements, network operators should be mindful of when determining their network monitoring needs; technology development, “flattening the network” and purchasing economics are examples.

The continued expansion of IP only looks to accelerate the need to displace legacy systems with a next-generation network. With the network “flattening,” more distributed IP components in the network will be created, thus effectively generating more potential points of failure. A broader range of IP services will be rolled out as a result, further increasing the complexity of the network. Added complexity creates more opportunities for points of monitoring; the monitoring infrastructure should be “flat” and flexible across the whole network.

The Network Intelligence Optimization framework is laying the foundation for a smarter network monitoring solution. In order to withstand the increase in speed and complexities, the traffic-capture layer must continue to be utilized in the hardware because it is necessary to have a deeper awareness of packets and applications, along with a more dynamic handling of them.

With the need to improve service delivery while having tighter budget control, it is no surprise that network managers must now do more with less. However, the network monitoring optimization framework enables an organization to shift from a high initial CAPEX business model to a lower and variable CAPEX model when looking at the network monitoring component of the budget.

Network managers can do more in other areas such as network forensics, lawful intercepts and behavioral analysis now that there is less to worry about. With managed service providers (MSPs) having become mainstream, and primarily focused on monetization of QoS/QoE rather than on monitoring network elements and packets, the layered approach to network monitoring is essential to enabling the business model and differentiation in such network environments.

This article originally appeared in the March 2012 issue of Security Today.

Featured

  • New Report Reveals Top Trends Transforming Access Controller Technology

    Mercury Security, a provider in access control hardware and open platform solutions, has published its Trends in Access Controllers Report, based on a survey of over 450 security professionals across North America and Europe. The findings highlight the controller’s vital role in a physical access control system (PACS), where the device not only enforces access policies but also connects with readers to verify user credentials—ranging from ID badges to biometrics and mobile identities. With 72% of respondents identifying the controller as a critical or important factor in PACS design, the report underscores how the choice of controller platform has become a strategic decision for today’s security leaders. Read Now

  • Overwhelming Majority of CISOs Anticipate Surge in Cyber Attacks Over the Next Three Years

    An overwhelming 98% of chief information security officers (CISOs) expect a surge in cyber attacks over the next three years as organizations face an increasingly complex and artificial intelligence (AI)-driven digital threat landscape. This is according to new research conducted among 300 CISOs, chief information officers (CIOs), and senior IT professionals by CSC1, the leading provider of enterprise-class domain and domain name system (DNS) security. Read Now

  • ASIS International Introduces New ANSI-Approved Investigations Standard

    • Guard Services
  • Cloud Security Alliance Brings AI-Assisted Auditing to Cloud Computing

    The Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment, today introduced an innovative addition to its suite of Security, Trust, Assurance and Risk (STAR) Registry assessments with the launch of Valid-AI-ted, an AI-powered, automated validation system. The new tool provides an automated quality check of assurance information of STAR Level 1 self-assessments using state-of-the-art LLM technology. Read Now

  • Report: Nearly 1 in 5 Healthcare Leaders Say Cyberattacks Have Impacted Patient Care

    Omega Systems, a provider of managed IT and security services, today released new research that reveals the growing impact of cybersecurity challenges on leading healthcare organizations and patient safety. According to the 2025 Healthcare IT Landscape Report, 19% of healthcare leaders say a cyberattack has already disrupted patient care, and more than half (52%) believe a fatal cyber-related incident is inevitable within the next five years. Read Now

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.

  • QCS7230 System-on-Chip (SoC)

    QCS7230 System-on-Chip (SoC)

    The latest Qualcomm® Vision Intelligence Platform offers next-generation smart camera IoT solutions to improve safety and security across enterprises, cities and spaces. The Vision Intelligence Platform was expanded in March 2022 with the introduction of the QCS7230 System-on-Chip (SoC), which delivers superior artificial intelligence (AI) inferencing at the edge.