Security On The Runway

Security On The Runway

Don’t forget to focus on security at the perimeter

Security in airports has always been a high priority, with high visibility. However, the perimeter surrounding the airport is still, in too many cases, neglected.

If an airport has full-fence coverage, it is usually an inadequate fence, without any detection capability. Airports are investing billions of dollars on the obvious security measures we see as members of the travelling public, such as screening, cameras and X-ray machines. Yet the fastest way to the runway and airplanes—the perimeter—is often left open.

Terrorist threats at airports have almost become the standard by which we measure threat scenarios, but what about random threats?

In July 2012, a man in Utah scaled a razor-wire topped perimeter fence at the St. George Municipal Airport using just a rug, attempting to steal an idle 50-passenger jet. Fortunately, this plane never left the ground, but it did raise obvious concerns about airport perimeter security.

Another example is that of a truck driver working in an airport’s segregated area who mistakenly drove in the wrong direction into the runway. This scenario could easily occur and turn an otherwise minor security violation into a catastrophic safety event. Such mistakes at airports can be the relatively small triggers that cause huge fires, resulting in a massive, negative, worldwide effect.

As we know, any security chain is no stronger than its weakest link. So, each segment and sector of the perimeter must be secure enough to ensure the entire perimeter is protected.

Concept of Operations

Typically, security specialists recommended starting with a full security concept, no Band-Aid approach to weak elements of the site. This step requires professionals to analyze threats and match them to the right concept of operations (CONOPS) by defining areas demanding high-security versus lower-security priority sections, identifying the location of the command and control center, determining whether more than one is needed and identifying where first responders are located and how long it will take them to respond to an alarm. If the perimeter has been breached, how long will it take to respond effectively and intercept an intruder?

Once these elements have been defined, a tactical plan can be developed to use the best combination of technologies and processes for each section of the perimeter, and these can be tailored to the perimeter intrusion detection system (PIDS).

The Recommended Solution

The simple answer to the challenge of perimeter security at an airport—or any similar critical perimeter— is a combination of smart fences and barriers, supported by a mix of long-range surveillance cameras and smart cameras equipped with outdoor-ready intelligent video analytics (IVA). Last, and equally important, is to have in place a fast and responsive mobile force with a centralized physical security information management (PSIM) system.

Additional sensors and tools may be needed to close specific gaps unique to each airport. Ideally, an airport should have a minimum of a two-layered PIDS solution installed. Some airports, such as the Indira Gandhi International Airport in Delhi, India— choose four layers for better confidence.

Recommended Sensor Technologies

Taut wire, a hybrid system of sensors weaved into a barbed wire fence, is the Cadillac of fences. This is the only fence that, in all weather conditions, has guaranteed performance with demonstrated high probability of detection (POD) and an almost zero false alarm rate (FAR). This is an excellent choice of technology where false alarms cannot be compromised. It can serve as a stand-alone barrier with no additional verification tools, such as cameras, although additional layers will increase performance.

Fence-mounted sensors. A variety of technologies support these applications, including microphonic copper cable, fiber optic sensors, vibration sensors and even seismic sensors. All of these systems are ideal addons to existing fences because, in the majority of instance, most of the investment has already been done.

Customers must be aware that fence-mounted sensor performance requires, in most cases, a secondary verification tool. Performance is not always guaranteed and sometimes depends on the quality of the installed fence. The same sensor will perform completely different on a loose fence versus a rigid, tightly installed fence. In the case of airports covering a huge landscape, sensor use may create a quite a few nuisances and false alarms per day. Some of the available sensors can locate an intruder within a sector to the level of a few meters. For airports, this ranging feature is usually not critical because the sites are relatively open and flat, and thus, with the inherent delay caused by a fence, typically 100 to 150 meters resolution of detection is plenty.

Buried cable sensors. This is a virtual fence implemented by a smart cable buried less than one foot underground. The cable creates an invisible electromagnetic field, capable of detecting any intruder entering that narrow virtual corridor. This is not an inexpensive solution; however, it is an ideal solution for places where a fence cannot be installed, whether for aesthetic reasons or environmental concerns. The fact that it is a concealed detection makes it unbeatable and ideal for protecting the internal quarters within an airport where a “fenceless” fence is desired.

Buried cable also is an ideal solution to protect aircraft parking areas and hangars, where the tarmac needs to be trenched for creating a virtual fence and where a real fence cannot be erected. Some of the solutions in the market can pinpoint the intruder along the corridor with a resolution of a few meters. This may be important, taking into account that this virtual fence does not delay the intruder.

Microwaves. This sensor is another type of virtual fence based on electromagnetic transmitters above the ground that create an invisible detection beam. Any intruder going through the field will disturb the beam and cause an alarm. Two types of microwaves are available: bi-static, composed of a transmitter on one side and a receiver on the other side, and mono-static, in which the same unit does both. A single pair of bistatic microwaves can cover 100 to 300 meters.

The technology is easy to install but requires constant grass cutting. It is ideal for places that may be open to restricted traffic, whether a temporary basis, where infrastructure construction is underway, or for longer term. Like any other virtual fence, it misses the deterrence and delay function.

Smart CCTV. Outdoor cameras, equipped with outdoor intelligent video analytics (IVA), are an excellent sensor to protect and complement every perimeter as well as the internal sections and infrastructure within the airport, especially if designed by outdoor experts with professional outdoor algorithms.

Integration

Airport security decision makers need to recognize and emphasize the importance of an integrated solution that marries everything into one coherent, manageable system. All security systems depend on human intervention and therefore should be based on the overall reliable alarms, notification and situation awareness.

Given the critical nature of any event at an airport, quick reaction and immediate response depends on the quality of the head end—the command and control center. Today’s PSIM applications are at the heart of any real-time decision process.

PSIM connects and integrates all sensors and correlates multiple inputs—cameras, gate control, access control, PIDS sensors and other applications — into a single synchronized display. A graphical information systems (GIS) engine is used as a platform to arrange layers of data, ensuring accurate location and cross reference between the fielded sensors, the maps and the mobile forces.

Securing the worldwide air traffic is a “game” that requires full teamwork—intelligence, counterterror experts, airport authorities, airline personnel and more. Security managers must change their focus from increasing the perception of protection with highly visible screening measures and focus on creating a complete and functional security solution.

This article originally appeared in the January 2013 issue of Security Today.

Featured

  • New Report Reveals Top Trends Transforming Access Controller Technology

    Mercury Security, a provider in access control hardware and open platform solutions, has published its Trends in Access Controllers Report, based on a survey of over 450 security professionals across North America and Europe. The findings highlight the controller’s vital role in a physical access control system (PACS), where the device not only enforces access policies but also connects with readers to verify user credentials—ranging from ID badges to biometrics and mobile identities. With 72% of respondents identifying the controller as a critical or important factor in PACS design, the report underscores how the choice of controller platform has become a strategic decision for today’s security leaders. Read Now

  • Overwhelming Majority of CISOs Anticipate Surge in Cyber Attacks Over the Next Three Years

    An overwhelming 98% of chief information security officers (CISOs) expect a surge in cyber attacks over the next three years as organizations face an increasingly complex and artificial intelligence (AI)-driven digital threat landscape. This is according to new research conducted among 300 CISOs, chief information officers (CIOs), and senior IT professionals by CSC1, the leading provider of enterprise-class domain and domain name system (DNS) security. Read Now

  • ASIS International Introduces New ANSI-Approved Investigations Standard

    • Guard Services
  • Cloud Security Alliance Brings AI-Assisted Auditing to Cloud Computing

    The Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment, today introduced an innovative addition to its suite of Security, Trust, Assurance and Risk (STAR) Registry assessments with the launch of Valid-AI-ted, an AI-powered, automated validation system. The new tool provides an automated quality check of assurance information of STAR Level 1 self-assessments using state-of-the-art LLM technology. Read Now

  • Report: Nearly 1 in 5 Healthcare Leaders Say Cyberattacks Have Impacted Patient Care

    Omega Systems, a provider of managed IT and security services, today released new research that reveals the growing impact of cybersecurity challenges on leading healthcare organizations and patient safety. According to the 2025 Healthcare IT Landscape Report, 19% of healthcare leaders say a cyberattack has already disrupted patient care, and more than half (52%) believe a fatal cyber-related incident is inevitable within the next five years. Read Now

New Products

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.