Managing Risks - Security efforts are now defined to protect critical infrastructure

Managing Risks

Security efforts are now defined to protect critical infrastructure

Traditionally, electrical substation security was aimed only at preventing access to stop vandalism and improve safety. Today, however, security efforts have been redefined to address new threats in order to protect critical infrastructure. Substations are a critical element in the distribution of high-voltage electrical networks, and any disruption can have a severe negative impact on society.

With these new threats have come new government mandates that drive more security implementations. Fortunately, there are technologies available that can assist utilities in their compliance with the new requirements.

Today, utilities must address threats from multiple areas: theft, cyber terrorism and destructive attacks. For example, the higher price of copper has escalated many instances of stealing wires, pipes and tubing over recent years.

While in the past the electrical grid operated with concepts and mechanisms that relied on physical or manual resources, modern systems have become a technological, interoperating network of control and data acquisition. Electrical generation, a foundation of modern convenience that contributes significantly to higher quality of daily life, has grown to become a critical component of practical and economic stability—and therefore a major focus in national security, vulnerable to acts of terrorism. The challenges can be daunting.

BACKGROUND: REQUIREMENTS AND MANDATES

Following the Northeast Blackout of 1965, the original North American Electrical Reliability Council was formed in 1968 by the Department of Energy to promote power transmission system reliability in the electrical utility systems of North America, as well as to provide guideline policies for their operation and accreditation. The North America Electric Reliability Corporation (NERC) succeeded the original Council in 2006 to revise the policies into enforceable standards in the United States and in some Canadian provinces.

NERC provides standards for implementing physical security at critical substations to protect personnel, prevent unauthorized access, and provide situational awareness for timely response and notification should circumstances dictate. NERC also manages a Critical Infrastructure Protection (CIP) program overseeing preparedness and response to serious incidents involving critical infrastructure. The CIP program originated in 1998 and was updated in 2003. It was designed to recognize that some critical infrastructure that is so vital, that the incapacity or destruction of such systems and assets would have a debilitating impact on security, national economic security, national public health or safety.

THE ZONE APPROACH TO SECURING CRITICAL INFRASTRUCTURE

The best way to approach modern physical security installations for electrical generation and substations is to conceptualize the facility as having different zones. Different technologies can be applied for each zone, which are then tied together through an integrated network with video verification.

The zone descriptions and associated technologies follow:

DEPLOYMENT

Dividing the property into different zones allows a security operator to utilize different detection components for each zone. The importance here is to develop a system based on an open platform technology that is designed to interconnect different components from a variety of vendors. No one vendor has all the pieces to the puzzle, so it is smart to be future-ready for new capabilities that are constantly coming on the market.

Depending on the property’s remoteness and critical importance, an operator may want different levels of physical security detection for different sites:

DETECTING APPROACHES TO THE FACILITY

Long distances: To detect approaching personnel or vehicles at a long distance from the perimeter boundary (see Zone 0 – Down Range), compact, land-based radar systems combined with ground sensors could be used. These devices preventively notify the security operations center that a down-range object has been detected and can automatically direct IP video cameras to the location.

Within 100 meters: Closer to the perimeter boundary (see Zone 1 – near perimeter), detection technology such as thermal IP cameras, laser scanners for high contrast scenes, and IP surveillance cameras with or without embedded video analytics can be used to identify intrusions.

Thermal cameras are used to detect heat registration day or night. They can detect a couple degrees of variation from the background.

Laser scanners can detect movement day or night, with pinpoint directional control. Their real strength is in high-contrast situations, such as direct sunlight or sunlight reflections off water. The detection then directs PTZ cameras to the incident location.

IP surveillance cameras, whether PTZ or 360-degree digital PTZ, are easy to install. Camera coverage can be linked with sensors in other zones, and the video can be displayed on smartphone devices for remote and roving access.

Physical and virtual fences: The Zone 2 – Perimeter Line can be an actual fence or a virtual fence with lasers and ground sensors. For physical fences, there are a variety of sensor technologies, including fiber-optic cabling. The sensors can be tuned to detect vibrations from any sort of tampering with the fence material. This provides critical protection when combined with ground sensors that can detect digging activity.

Inside the fence: Passive infrared sensors use infrared light to detect object movement (see Zone 3 – Inside Perimeter Line). When combined with IP cameras and video analytics, this provides a complete set of detection tools.

Protecting infrastructure: If an intruder manages to get inside the compound (see Zone 4 – site infrastructure), there are two factors to consider: access to the building via secured doors and protection of the building exterior roof and windows. Door access should be protected with an access control system linked to the video system. Access control should include proper card enrollment, with security staff monitoring door/gate access to determine if unauthorized personnel are entering restricted areas.

The right substation security system will support interoperability between automatic sensor detection systems and verification with video surveillance systems that notify operators before an intrusion occurs. No one vendor can supply all the pieces to the puzzle, so the important factor is to ensure flexibility in the technology design. Be sure to choose a security system based on a video software management platform with open architecture in order to allow the exchange of information in real time between all the components for a systematic approach to detection, notification and response.

This article originally appeared in the December 2015 issue of Security Today.

Featured

  • New Report Reveals Top Trends Transforming Access Controller Technology

    Mercury Security, a provider in access control hardware and open platform solutions, has published its Trends in Access Controllers Report, based on a survey of over 450 security professionals across North America and Europe. The findings highlight the controller’s vital role in a physical access control system (PACS), where the device not only enforces access policies but also connects with readers to verify user credentials—ranging from ID badges to biometrics and mobile identities. With 72% of respondents identifying the controller as a critical or important factor in PACS design, the report underscores how the choice of controller platform has become a strategic decision for today’s security leaders. Read Now

  • Overwhelming Majority of CISOs Anticipate Surge in Cyber Attacks Over the Next Three Years

    An overwhelming 98% of chief information security officers (CISOs) expect a surge in cyber attacks over the next three years as organizations face an increasingly complex and artificial intelligence (AI)-driven digital threat landscape. This is according to new research conducted among 300 CISOs, chief information officers (CIOs), and senior IT professionals by CSC1, the leading provider of enterprise-class domain and domain name system (DNS) security. Read Now

  • ASIS International Introduces New ANSI-Approved Investigations Standard

    • Guard Services
  • Cloud Security Alliance Brings AI-Assisted Auditing to Cloud Computing

    The Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment, today introduced an innovative addition to its suite of Security, Trust, Assurance and Risk (STAR) Registry assessments with the launch of Valid-AI-ted, an AI-powered, automated validation system. The new tool provides an automated quality check of assurance information of STAR Level 1 self-assessments using state-of-the-art LLM technology. Read Now

  • Report: Nearly 1 in 5 Healthcare Leaders Say Cyberattacks Have Impacted Patient Care

    Omega Systems, a provider of managed IT and security services, today released new research that reveals the growing impact of cybersecurity challenges on leading healthcare organizations and patient safety. According to the 2025 Healthcare IT Landscape Report, 19% of healthcare leaders say a cyberattack has already disrupted patient care, and more than half (52%) believe a fatal cyber-related incident is inevitable within the next five years. Read Now

New Products

  • A8V MIND

    A8V MIND

    Hexagon’s Geosystems presents a portable version of its Accur8vision detection system. A rugged all-in-one solution, the A8V MIND (Mobile Intrusion Detection) is designed to provide flexible protection of critical outdoor infrastructure and objects. Hexagon’s Accur8vision is a volumetric detection system that employs LiDAR technology to safeguard entire areas. Whenever it detects movement in a specified zone, it automatically differentiates a threat from a nonthreat, and immediately notifies security staff if necessary. Person detection is carried out within a radius of 80 meters from this device. Connected remotely via a portable computer device, it enables remote surveillance and does not depend on security staff patrolling the area.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”