A Fine Balance: Bandwidth Consumption vs Live Video Monitoring

A Fine Balance: Bandwidth Consumption vs Live Video Monitoring

Managing security along public transit routes comes with many challenges, particularly as more people rely on buses and trains for daily transportation. With so many commuters, and multiple vehicles moving around the clock, the risk factor for accidents, altercations and other issues remains high.

Advanced, real-time video surveillance monitoring is a critical part of protecting the public. When an incident occurs on a transit vehicle, you can immediately see what’s happening, and also share that video with police or other emergency personnel.

Most transportation agencies, however, don’t have an unlimited budget to live stream high resolution megapixel images to their command center. Streaming 1080p video over a 4G LTE network, for example, can be costly, especially when multiplied over hundreds of buses or trains each with multiple surveillance cameras.

So how can transportation agencies maintain regular live access to their mobile surveillance cameras without incurring a massive expense?  Here’s some advice on managing mobile bandwidth consumption.

1. Pre-program your IP cameras

One of the most effective ways to reduce your bandwidth is to pre-program your IP surveillance cameras based on activity level. This takes a bit of time, but it’s well worth the effort. There’s no sense in capturing 1080p images inside of an empty bus, so do a thorough review of your agency’s surveillance needs. When do you absolutely need 720p or 1080p images? And when will a 2CIF or 4CIF image suffice? Remember that the amount of activity the cameras are capturing affects the bit rate, so consider the complexity of your scenes. You can maximize your bandwidth by programming your IP cameras to record at the right bit rates for your vehicles’ activity levels.

Let’s take a closer look at how to do this:

During low activity times (when fewer riders are on board a vehicle, or the vehicle is parked at a depot) you’re capturing mainly static scenes. In this scenario, capturing a 2CIF resolution image at 15 frames per second (fps) would result in a camera bit rate of 0.11 Megabits per second (Mbps).

Capturing this same scene in 1080p, at 30 fps, would result in a camera bit rate of approximately 2.4 Mbps, more than 20 times the bandwidth of the 2CIF image. So you can see how a little adjustment at the right time goes a long way toward reducing your overall bandwidth consumption.

Here are a few more scenarios to consider:

  • During medium activity level times (in between peak hours, for example, when your vehicles are making frequent stops and passengers are getting on and off the vehicle) your cameras are consuming more bandwidth.

 

A 2CIF image captured at 15 fps would result in a camera bit rate of 0.33 Mbps. A 4CIF image, also captured at 15 fps, would result in bit rate of 0.55 Mbps. A 1080p image, also captured at 15 fps, would result in 3.78 Mbps.

  • During your highest activity times (defined as those periods where there are many passengers onboard vehicles and therefore lots of motion) you will be consuming the most bandwidth because the cameras are capturing complex scenes.

 

A 2CIF image captured at 15 fps results in a camera bit of 0.72 Mbps. A 4CIF image captured at 15 fps results in a camera bit rate of 1.22 Mbps while a 1080p image, also captured at 15fps, results in 8.25 Mbps.

Understanding the impact your frame rates have on bandwidth consumption during low, medium and high activity periods is key, and sets you up well for the next step in this process.

2. Strike the right balance

The key here is to find the best balance between image quality and bandwidth consumed. You don’t want to incur bandwidth costs to view high resolution images of empty buses, but you also don’t want grainy, pixelated images when you are trying to decipher important details.

The best approach is to test a few, different resolutions and frame rates at different times to find the right balance.

Remember, the numbers cited above are examples, and factors like the position of your surveillance cameras, the lighting inside your vehicles, and the type of scenes captured all play a part in bandwidth consumption.

3. Take advantage of alternate stream recording

Once you have determined the best bit rates to use throughout the day, you may be asking yourself: “What if an incident occurs on a vehicle at a time when I’ve programmed my cameras to capture only 2CIF images?”

The answer, of course, is to use alternate stream recording. Use the low resolution stream for live viewing, and then record a higher resolution stream to your network video recorder (NVR). This gives your command center the ability to see into buses or light rail trains as needed using much less bandwidth, and still ensures that the system is capturing high quality, evidentiary video that you can pull later for forensic analysis should an incident occur.

Featured

  • New Report Reveals Top Trends Transforming Access Controller Technology

    Mercury Security, a provider in access control hardware and open platform solutions, has published its Trends in Access Controllers Report, based on a survey of over 450 security professionals across North America and Europe. The findings highlight the controller’s vital role in a physical access control system (PACS), where the device not only enforces access policies but also connects with readers to verify user credentials—ranging from ID badges to biometrics and mobile identities. With 72% of respondents identifying the controller as a critical or important factor in PACS design, the report underscores how the choice of controller platform has become a strategic decision for today’s security leaders. Read Now

  • Overwhelming Majority of CISOs Anticipate Surge in Cyber Attacks Over the Next Three Years

    An overwhelming 98% of chief information security officers (CISOs) expect a surge in cyber attacks over the next three years as organizations face an increasingly complex and artificial intelligence (AI)-driven digital threat landscape. This is according to new research conducted among 300 CISOs, chief information officers (CIOs), and senior IT professionals by CSC1, the leading provider of enterprise-class domain and domain name system (DNS) security. Read Now

  • ASIS International Introduces New ANSI-Approved Investigations Standard

    • Guard Services
  • Cloud Security Alliance Brings AI-Assisted Auditing to Cloud Computing

    The Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment, today introduced an innovative addition to its suite of Security, Trust, Assurance and Risk (STAR) Registry assessments with the launch of Valid-AI-ted, an AI-powered, automated validation system. The new tool provides an automated quality check of assurance information of STAR Level 1 self-assessments using state-of-the-art LLM technology. Read Now

  • Report: Nearly 1 in 5 Healthcare Leaders Say Cyberattacks Have Impacted Patient Care

    Omega Systems, a provider of managed IT and security services, today released new research that reveals the growing impact of cybersecurity challenges on leading healthcare organizations and patient safety. According to the 2025 Healthcare IT Landscape Report, 19% of healthcare leaders say a cyberattack has already disrupted patient care, and more than half (52%) believe a fatal cyber-related incident is inevitable within the next five years. Read Now

New Products

  • Automatic Systems V07

    Automatic Systems V07

    Automatic Systems, an industry-leading manufacturer of pedestrian and vehicle secure entrance control access systems, is pleased to announce the release of its groundbreaking V07 software. The V07 software update is designed specifically to address cybersecurity concerns and will ensure the integrity and confidentiality of Automatic Systems applications. With the new V07 software, updates will be delivered by means of an encrypted file.

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.