Consider Data Security

Consider Data Security

Every project must ensure best practices

Data security is just as important as the premises we safeguard, making it imperative to consider both physical and cybersecurity simultaneously. As security technology becomes increasingly connected—allowing it to take advantage of the Internet of Things and offer enhanced integration capabilities—we must ensure data security best practices in every project.

As with any connected device, there are risks to security technology that must be addressed. Similar to other devices attached to a network, these can include unauthorized access, denial of service attacks, and repurposing a device by downloading malware. We have seen increasing use of data security best practices in our industry, but there is still room for improvement. Do you know what to look for when considering data security? Let’s break down some of the key points for minimizing risk.

Operating Systems

Full featured operating systems, such as Linux or Windows, provide services to install and run applications and support file systems and general purpose remote sessions, and these services can be used to attack the system. Most VMS servers and NVRs reside on either a Windows or Linux operating system, making it imperative that the most current updates and patches are applied. Also, ensure the VMS can work with a firewall up, anti-virus software, and within network policies. This includes hardened passwords, restricted physical and network access, and disabling USB ports.

As for IP cameras and intrusion system devices, their operating systems should be closed and run in limited memory space. There should be no capability to create files, and nothing should be able to be written to the device itself with the exception of digitally signed firmware. Devices that can run third-party apps can be weaponized and used as an attack platform against a network.

Password Use

User accounts and access to devices is one of the largest issues today. For example, many IP cameras are installed with the default user name and password. If installed on an accessible network, a connection can be established from anywhere in the world. Devices should have a force password feature that also adheres to password policies.

User Access Rights

For remote access, users should be required to use a password to access system functionality. Apps or other means of remote command and control should limit user access to only the features they are authorized to use at the system level. This ensures only authorized people have access to data.

Encryption and Authentication

To reduce the possibility of data being intercepted, viewed, and analyzed by packet sniffers, unencrypted communication channels should be avoided. Systems should support encryption of data transmitted over the network and to the cloud using up to 256-bit AES Encryption. AES encryption that uses Cipher Block Chaining (CBC), which changes the key with each message, can also greatly reduce the possibility of decoding. Systems should also support certificates used in secure network scenarios, such as Public Key Infrastructure (PKI).

For end-to-end security of video systems, all network-wide communications between the cameras, recording devices and video management system should be assigned an authentication key. This ensures that an infrastructure of trust is built before network-wide communications start. Video devices should also include a built-in Trusted Platform Module to safely store cryptographic keys used for authentication and encryption. All cryptographic operations for authentication and encryption should only be executed inside the Trusted Platform Module.

For mission critical video applications, consider taking authentication a step further by using a system that supports the use of certificates as well as highly-secure identification and authentication through multi-factor smart card credentials.

For intrusion systems, end-to-end encryption is essential for remote programming data. Authentication of control panel communications is also important. The receiver at the monitoring center should perform authentication on all messages to prevent replay or substitution of the control panel. Replay of messages occurs when a network sniffer is used to record messages and attempt to play them back. Substitution occurs when a panel is replaced by another panel. These tactics attempt to fool the receiver that a panel is still online and working when there is actually a problem. Authentication can be done by using a key to verify each message that is received. The key should be changed with each message, including supervision, openings and closings, and alarm events.

Port Usage

Network and vulnerability scanners are designed to scan a specific range of ports and the protocols associated with those ports. The more ports that are open on a system, the more opportunity there is to leverage a device or the services on that device. Ports that are not needed in a particular installation should be disabled.

Today, internet access to security devices, such as IP cameras and intrusion control panels, is desired for maintenance, updates and remote access, especially to cut costs. It is recommended to only use cloud connecting cameras and no port-forwarding configurations. Also, protocols such as Telnet should not be used. For cloud-ready control panels, ensure they are programmed with a unique cloud ID and PKI certificate that will allow a mutually authenticated Transport Layer Security (TLS) connection to the cloud services. These advanced cryptology standards help to prevent eavesdropping, substitution, and data tampering. The cloud should also be continuously monitored and updated to maintain the security of connected devices.

Prevention of Denial-of-Service (DoS) Attacks

All computing systems have a finite set of resources, such as processing power and memory, to use, and this is especially true for embedded devices. A DoS attack can occur when a hacker opens multiple TCP sessions with a device, rendering it unable to receive additional messages. Consider ways to minimize the risk of a denial of service attack caused by a flood of network traffic.

For example, although a flood of network traffic will not cause a failure of a security control panel that prevents it from monitoring the physical security of the premises, very high levels of traffic may cause the loss of received packets. If the high volume of traffic is over an extended time, the loss of received packets could result in communication failures. To prevent this, connections with remote programming software should be authenticated. For monitoring center receivers, the receiver should only process data that is expected and in the proper format. If the account is not in the receiver’s account database or the data isn’t in the correct format, the receiver should not spend time processing and responding to the message.

The Highest Standards

Given today’s environment, where a single weak link is all it takes for a hacker to jeopardize an entire data system, it is imperative to protect all facets of a system. Make sure you are taking the proper precautions with the systems you are purchasing or installing and understand how to achieve the highest standards in end-to-end data security.

This article originally appeared in the September 2018 issue of Security Today.

Featured

  • The Evolution of IP Camera Intelligence

    As the 30th anniversary of the IP camera approaches in 2026, it is worth reflecting on how far we have come. The first network camera, launched in 1996, delivered one frame every 17 seconds—not impressive by today’s standards, but groundbreaking at the time. It did something that no analog system could: transmit video over a standard IP network. Read Now

  • From Surveillance to Intelligence

    Years ago, it would have been significantly more expensive to run an analytic like that — requiring a custom-built solution with burdensome infrastructure demands — but modern edge devices have made it accessible to everyone. It also saves time, which is a critical factor if a missing child is involved. Video compression technology has played a critical role as well. Over the years, significant advancements have been made in video coding standards — including H.263, MPEG formats, and H.264—alongside compression optimization technologies developed by IP video manufacturers to improve efficiency without sacrificing quality. The open-source AV1 codec developed by the Alliance for Open Media—a consortium including Google, Netflix, Microsoft, Amazon and others — is already the preferred decoder for cloud-based applications, and is quickly becoming the standard for video compression of all types. Read Now

  • Cost: Reactive vs. Proactive Security

    Security breaches often happen despite the availability of tools to prevent them. To combat this problem, the industry is shifting from reactive correction to proactive protection. This article will examine why so many security leaders have realized they must “lead before the breach” – not after. Read Now

  • Achieving Clear Audio

    In today’s ever-changing world of security and risk management, effective communication via an intercom and door entry communication system is a critical communication tool to keep a facility’s staff, visitors and vendors safe. Read Now

  • Beyond Apps: Access Control for Today’s Residents

    The modern resident lives in an app-saturated world. From banking to grocery delivery, fitness tracking to ridesharing, nearly every service demands another download. But when it comes to accessing the place you live, most people do not want to clutter their phone with yet another app, especially if its only purpose is to open a door. Read Now

New Products

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.”

  • HD2055 Modular Barricade

    Delta Scientific’s electric HD2055 modular shallow foundation barricade is tested to ASTM M50/P1 with negative penetration from the vehicle upon impact. With a shallow foundation of only 24 inches, the HD2055 can be installed without worrying about buried power lines and other below grade obstructions. The modular make-up of the barrier also allows you to cover wider roadways by adding additional modules to the system. The HD2055 boasts an Emergency Fast Operation of 1.5 seconds giving the guard ample time to deploy under a high threat situation.

  • Mobile Safe Shield

    Mobile Safe Shield

    SafeWood Designs, Inc., a manufacturer of patented bullet resistant products, is excited to announce the launch of the Mobile Safe Shield. The Mobile Safe Shield is a moveable bullet resistant shield that provides protection in the event of an assailant and supplies cover in the event of an active shooter. With a heavy-duty steel frame, quality castor wheels, and bullet resistant core, the Mobile Safe Shield is a perfect addition to any guard station, security desks, courthouses, police stations, schools, office spaces and more. The Mobile Safe Shield is incredibly customizable. Bullet resistant materials are available in UL 752 Levels 1 through 8 and include glass, white board, tack board, veneer, and plastic laminate. Flexibility in bullet resistant materials allows for the Mobile Safe Shield to blend more with current interior décor for a seamless design aesthetic. Optional custom paint colors are also available for the steel frame.