Overall Security

Define the basic parameters for software and hardware classification

The physical security industry, and the technologies that drive it, continue to evolve and advance at a rapid pace. Much of the attention has been focused on new software products and applications that enable a host of intelligent video surveillance and security capabilities. These range from new imaging and biometrics to smart analytics and highly integrated and autonomous software platforms.

But what is the underlying driver behind these programming advancements? There are two opposing schools of thought when approaching this question: one being the decades-long developments in software and the other being the continued advancements of the physical hardware devices that provide the foundation for the software to run on. Before diving into this deeper, let’s establish some basic defined parameters for what classifies as software and hardware.

PROCESS AND PROCEDURE

Software is a rather general term used to describe a collection of programs, processes and procedures that perform given tasks on a computer or are embedded in products like IP cameras, video servers or access controllers.

Software is typically classified as being either system or application specific, such as video management or access control system platforms versus facial recognition or object identification applications. Hardware is essentially a physical device that you can see and/or touch, even if on the tiniest scale.

Software and hardware interact with one another with the software directing the hardware on which series of tasks it needs to execute and at the precise moment those tasks should be performed. While it is common to switch and/or enhance software or use multiple software applications at a time, hardware is less frequently changed. In most cases, software can be more easily created, changed or deleted than hardware products. Adjustments or replacements to hardware typically are more complex and expensive.

There is much to be said for the “hardware as a foundation” school of thought, as all software must use some form of hardware to operate. To get a better grasp of this concept, let’s look at three fundamental hardware classifications prevalent in the physical security industry: cameras and imaging devices, recording and storage products, and microprocessors.

It wasn’t that long ago that analog surveillance cameras, once referred to as “CCTV” cameras, and dominated the physical security landscape. The transition from tube cameras to imaging sensors to digital signal processing and on to megapixel sensors with 1080p and 4K resolution has transformed video from grainy black and white pictures to laser sharp color imagery that is viewable under even the most challenging lighting conditions. These and other hardware advancements enable today’s cameras to capture better images and deliver enhanced situational awareness.

Multi-sensor panoramic cameras are a perfect example of this advanced technology. They are capable of providing widearea HD surveillance with powerful processors driving versatile features and intelligence at the edge.

Although the performance benefits of today’s highly advanced surveillance cameras are quite obvious on the surface, their hidden advantage is the vast amounts of video data they produce to feed specific software applications. Identifying subtle facial details and characteristics, the precise color of an individual’s clothing or vehicle, license plate numbers on moving vehicles and more are capabilities that are totally reliant on the quality of the video.

The same holds true for most video analytics like motion detection, object detection, and direction indication built into today’s more advanced imaging edge devices. To put it simply, the higher the image resolution, frequency and density of information transfer, the more data is available for precise analysis.

Image storage is another hardware-dependent requirement driving advanced operations. Beyond pure storage capacity, the writing and access speeds of new storage technologies is paramount. Consider the evolution of storage media specifically for physical security operations ranging from celluloid film to videotape, to hard disk drives and now to solid state or chip-based storage media. Today’s digital storage systems enable software to run at incredibly fast speeds capable of processing millions of operations in miniscule amounts of time. These hardware devices enable AI-embedded features and functionality to run virtually in real time.

Microprocessor development is also a hardware-based technology that is co-dependent on software to the extent that without one the other could not exist. The development of single board computers and central processing units in the mid-seventies spawned a new era of processing devices that are now employed in a multitude of physical security solutions. Microprocessors control almost every function of every video, access control and fire/alarm security product available today, carrying out millions of operations every second.

Such accelerated processing speeds allow products and the systems where they are deployed to react to various inputs and triggers quickly and automatically.

This article originally appeared in the July / August 2021 issue of Security Today.

Featured

  • Video Surveillance Trends to Watch

    With more organizations adding newer capabilities to their surveillance systems, it’s always important to remember the “basics” of system configuration and deployment, as well as the topline benefits of continually emerging technologies like AI and the cloud. Read Now

  • New Report Reveals Top Trends Transforming Access Controller Technology

    Mercury Security, a provider in access control hardware and open platform solutions, has published its Trends in Access Controllers Report, based on a survey of over 450 security professionals across North America and Europe. The findings highlight the controller’s vital role in a physical access control system (PACS), where the device not only enforces access policies but also connects with readers to verify user credentials—ranging from ID badges to biometrics and mobile identities. With 72% of respondents identifying the controller as a critical or important factor in PACS design, the report underscores how the choice of controller platform has become a strategic decision for today’s security leaders. Read Now

  • Overwhelming Majority of CISOs Anticipate Surge in Cyber Attacks Over the Next Three Years

    An overwhelming 98% of chief information security officers (CISOs) expect a surge in cyber attacks over the next three years as organizations face an increasingly complex and artificial intelligence (AI)-driven digital threat landscape. This is according to new research conducted among 300 CISOs, chief information officers (CIOs), and senior IT professionals by CSC1, the leading provider of enterprise-class domain and domain name system (DNS) security. Read Now

  • ASIS International Introduces New ANSI-Approved Investigations Standard

    • Guard Services
  • Cloud Security Alliance Brings AI-Assisted Auditing to Cloud Computing

    The Cloud Security Alliance (CSA), the world’s leading organization dedicated to defining standards, certifications, and best practices to help ensure a secure cloud computing environment, today introduced an innovative addition to its suite of Security, Trust, Assurance and Risk (STAR) Registry assessments with the launch of Valid-AI-ted, an AI-powered, automated validation system. The new tool provides an automated quality check of assurance information of STAR Level 1 self-assessments using state-of-the-art LLM technology. Read Now

New Products

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening.

  • 4K Video Decoder

    3xLOGIC’s VH-DECODER-4K is perfect for use in organizations of all sizes in diverse vertical sectors such as retail, leisure and hospitality, education and commercial premises.

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols.