The Hard Way

Hardware-based encryption does not require user intervention

Almost every day, a report of lost, stolen or missing notebook PCs and hard drives or of related data breaches shocks the global community, including those people whose data has been compromised. Protection of data on individual systems and drives, as well as in data centers, has become a necessity for corporations, universities, government agencies and other organizations.

The Trusted Computing Group has worked with storage standards groups to create an open specification that enables full-disk encryption for hard disk drives, also called self-encrypting drives. This encryption is hardware-based and transparent to the user. Once the drive is in the system, data is automatically and continually encrypted. If a user cannot authenticate access to the system or if the system is lost or stolen, the hard drive locks and becomes useless. Further, this hardware-based encryption does not require user intervention and does not impact system performance as encryption usually does.

The Security Dilemma
Today, more than 40 breach notification laws exist. These laws are rapidly moving the industry toward full-disk encryption. Protecting data that is lost or stolen requires a breach notification, unless the drive has FDE. With FDE, no notification is required, as long as it can be proven that the data was encrypted.

The transportability of laptops makes them a prime target for loss, theft and encryption of sensitive data. While drives may be secure in the data center, eventually every drive leaves due to failure, maintenance, reconditioning, end of life, or even loss or theft. In fact, 50,000 drives are decommissioned from data centers each day.

As a result, the same rules for laptops apply to drives, even in the data center. The data on the drive should be encrypted before it leaves the data center. Rather than requiring an additional off-drive and upstream process to encrypt the drive, this on-drive encryption should protect the data center under normal operation.

Encryption Solutions
In the data center, there are various points to implement either software- or hardware-based encryption. Softwarebased schemes, however, can be thwarted by the same viruses and malware they attempt to prevent.

There are several reasons to perform encryption directly on the hard drive as opposed to some point upstream in the data center. For example, there are performance and efficiency issues in data deduplication and data compression.

Deduplication tools require looking at the plain text. Since much of the data is the same, storing it once and pointing to that data whenever it is needed in some other context through deduplication techniques frees up a significant amount of storage space. With encrypted data, deduplication cannot be performed because the same data encrypted at different points in the data stream could look different in encrypted form. Decompression techniques require redundancy in the message for compression. Encrypted data is totally random and has no built-in redundancy, so it cannot be compressed.

As a result, encrypting too early in the data flow makes deduplication and decompression algorithms ineffective and interferes with end-to-end integrity metrics. Within the data center, data should not be encrypted until it reaches the drive. However, deduplication and decompression provide only part of the incentive for encrypting directly on the drive. When encryption is performed everywhere or anywhere instead of in the drive, the situation is quite complex. Managing encryption, as well as authentication keys, is one of the more important aspects of encryption. The authentication key unlocks the drive. Only the hash value of the authentication key is stored on the drive for comparison during authentication. Furthermore, the encryption key is encrypted under the authentication key and stored on the drive.

Full-disk Protection
In an FDE drive, the encryption keys are established in the factory by on-board random number generators and never leave the drive, eliminating the need to manage encryption keys. In the data center, key management only requires managing the authentication keys, which eliminates layers of key management.

FDE reduces IT complexity. The database administrators, application developers, operating system, encryption engine and network issues are all eliminated by encrypting at the drive. The storage system upgrades by schedule in an FDE system. Adding drives is simple since each drive comes with its own encryption key. The system has scalability, and encryption is performed in hardware, allowing full-channel-speed operation.

Encrypting stored data outside the drive has planning and management issues that add to complexity, errors and data recoverability risk. These include problems that can occur in the following scenarios: when application developers change applications, when database administrators change databases, in managing and scaling encryption CPU demand as storage and I/Os are added, through extra storage for decreased compression and deduplication effectiveness, by tracking both encryption and local keys on all associated hardware/ software for data recovery and in granular data classification.

In contrast, when encryption is performed in the drive, the process is simplified by adding a key service to one server and adding FDEs to application storage with scheduled upgrades.

Cost is a primary business value. For FDE, the initial acquisition costs are reduced when encryption is integrated into standard products and implemented according to a standard storage upgrade schedule. Additional cost reduction occurs from reduced drive decommissioning and insurance, the ability to compress and deduplicate, and preservation of drive hardware value through easy repurposing. Since simply deleting the key sanitizes the drive, the drive can continue to perform a useful function rather than being scrapped.

Without FDE, there are transport issues, and degaussing, shredding and overwriting techniques must be used at the end of a drive’s life. None of these techniques is foolproof, and all have additional cost. With FDE, the simple erasure of the key sanitizes the drive, making it unreadable. FDE becomes practical and ubiquitous with open industry standards.

Featured

  • It Always Rains in Florida

    Over the years, and many trips to various cities, I have experienced some of the craziest memorable things. One thing I always count on when going to Orlando is a massive rainstorm after the tradeshow has concluded the first day. Count on it, it is going to rain Monday evening. Expect that it will be a gully washer. Read Now

    • Industry Events
  • Live from GSX 2024 Preview

    It’s hard to believe, but GSX 2024 is almost here. This year’s show runs from Monday, September 23 to Wednesday, September 25 at the Orange County Convention Center in Orlando, Fla. The Campus Security Today and Security Today staff will be on hand to provide live updates about the security industry’s latest innovations, trends, and products. Whether you’re attending the show or keeping tabs on it from afar, we’ve got you covered. Make sure to follow the Live from GSX page for photos, videos, interviews, product demonstrations, announcements, commentary, and more from the heart of the show floor! Read Now

    • Industry Events
  • Elevate Your Business

    In today’s dynamic business environment, companies specializing in physical security are constantly evolving to remain competitive. One strategic shift these businesses can make to give them the advantage is a full or partial transition to a recurring revenue model, popularly called a subscription service. This approach will bring numerous benefits that not only enhance business stability but also improve customer relationships and drive innovation. Recurring monthly revenue (RMR) or recurring annual revenue (RAR) are two recurring cadence choices that work simply and effectively. Read Now

  • Playing a Crucial Role

    Physical security technology plays a crucial role in detecting and preventing insider cybersecurity threats. While it might seem like a stretch to connect physical security with cyber threats, the two are closely intertwined. Here’s how physical security technology can be leveraged to address both external and internal threats. Read Now

Featured Cybersecurity

Webinars

New Products

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure. 3

  • Luma x20

    Luma x20

    Snap One has announced its popular Luma x20 family of surveillance products now offers even greater security and privacy for home and business owners across the globe by giving them full control over integrators’ system access to view live and recorded video. According to Snap One Product Manager Derek Webb, the new “customer handoff” feature provides enhanced user control after initial installation, allowing the owners to have total privacy while also making it easy to reinstate integrator access when maintenance or assistance is required. This new feature is now available to all Luma x20 users globally. “The Luma x20 family of surveillance solutions provides excellent image and audio capture, and with the new customer handoff feature, it now offers absolute privacy for camera feeds and recordings,” Webb said. “With notifications and integrator access controlled through the powerful OvrC remote system management platform, it’s easy for integrators to give their clients full control of their footage and then to get temporary access from the client for any troubleshooting needs.” 3

  • Unified VMS

    AxxonSoft introduces version 2.0 of the Axxon One VMS. The new release features integrations with various physical security systems, making Axxon One a unified VMS. Other enhancements include new AI video analytics and intelligent search functions, hardened cybersecurity, usability and performance improvements, and expanded cloud capabilities 3