Extending Trust And Security

Today, most organization officials understand they can use their IP network to connect physical security devices together. In some cases, the capital and operational cost savings from using a single communications infrastructure is enough to motivate them. But for others, further justification and additional benefits may be needed to drive convergence between the physical and the cyber worlds. And, most security and IT groups will also want to ensure the integrity of their respective systems and all data that may be shared between them.

The good news is there is a set of existing standards, created by the Trusted Computing Group (TCG), which has more than 100 members, which will secure both data and networked devices, as well as provide value by solving two common problems that virtually all organizations have:

  • Do you know who followed your employees through the door today?
  • Are your employees at their computers or have they left them unattended, exposing your network and other assets to a potential security breach?

A True Convergence
Most groups will acknowledge that these two common problems can lead to big headaches, such as theft of physical and logical (intellectual property, financial and customer data) assets, as well as corporate and/or regulatory compliance lapses. Unfortunately, most organizations have disparate policies and approaches to physical and cyber security, and with no employee incentive, organizations are simply hoping employees will police themselves and others.

Using TCG’s open Trusted Network Connect architecture and standards-based IF-MAP (which refers to Interface Metadata Access Protocol) suite can help solve these very real problems. Hirsch Electronics, Juniper Networks and Infoblox have teamed up to show how to close this gap in organizational security and to incentivize employees to follow applicable policies.

The result is a true convergence of physical access control security and network access control security where physical presence in a given location becomes a policy for granting or denying network access.

Here is how this works: an employee must “badge-in” at the door in order to get network access. Otherwise, the employee will be denied network access and will be required to make a trip back to a physical security credential reader before they will be granted network access. The same goes for exiting a building, if the employee requires network access via a Virtual Private Network connection, they must “badge out”.

In more technical terms, Hirsch’s Velocity PAC system uses IF-MAP to encrypt and transmit relevant access control event information (such as an authenticated user admitted to, or exited from, a building or particular zone) to a network-based clearinghouse for “metadata”. In turn, this clearinghouse uses IF-MAP to provide other trusted network devices, on a subscription-basis, with requested data about network events or, now, physical security events. These trusted devices then use this event data to make policy-based decisions as to what network resources a user can access based upon their physical location.

The whole concept is similar to social networking (like Twitter) for networked devices. Some devices “tweet” and other devices are listening for those “tweets.”

Figure 1: The Metadata Clearinghouse and Policy Decision-making Functions Can be Either Collapsed as Above or Discretely Implemented as Two Scalable Network Devices.

Trust-Based Architecture
By deploying this capability in their own physical and network security systems, organizations can safely share information between these two worlds and take comfort in knowing that these network devices are part of a trust-based architecture supported by leading IT and physical security companies. Furthermore, a wide range of additional policy-based network actions could be implemented in response to a physical or building system event.

For instance, since other building systems are interconnected to the access control system, such as the Hirsch Velocity server, those events can also be passed along to the network metadata clearinghouse supported by both Juniper and Infoblox. Such events can alert the network to a fire in the datacenter. In turn, the network, using the Juniper policy server, could respond by re-routing network traffic to a back-up datacenter.

The benefits for this type of convergence are multi-fold. At a minimum, by requiring employees to badge-in prior to gaining network access, organizations should see a significant reduction in “tailgating.” As a result, organizations will have more confidence in exactly who is inside their buildings at any given time; this is particularly important in the event of an emergency.

From a network security perspective, this solution adds yet another layer of protection to the network and its resources. Data theft and leakage from unattended PCs can be reduced. Fraudulent toll or fee-based charges from unauthorized IP phone usage can be decreased. And the illegitimate use of an employee’s username and password can be more easily detected and mitigated. For example, if the employee is in the building, but someone attempts to use his log-on information from somewhere else, the network will immediately recognize and respond to the policy violation with a network access denial, email notification, and even require a new password to be created.

And finally, organizations will not only have plugged a gap that has existed in their security policies, they will have the tool to better correlate physical and logical actions and flag possible “out of policy” events that can be an indicator of a compliance lapse. Thus, they will be able to demonstrate better control and policy enforcement during compliance audits including those for financial, corporate governance or healthcare/identity protection.

The Trusted Computing Group’s IF-MAP delivers on the real promise of network convergence. Not by simply sharing a network infrastructure, but by sharing information in new ways to enhance both physical and cyber security.

This open, standards-based protocol enables all adopting vendors to enable secure, trust-based communications among any sort of devices on the network. As a result, administrators can implement new policies which enhance both physical and network security and compliance, as well as track activity and set policies to monitor and quarantine such devices -- or take other action. Additionally, this capability helps to maximize every organization’s physical security and network infrastructure return on investment, which is particularly important in these challenging times.

About the Author

Bob Beliles is the senior manager for physical security market management at Cisco.

Featured

  • Report: 47 Percent of Security Service Providers Are Not Yet Using AI or Automation Tools

    Trackforce, a provider of security workforce management platforms, today announced the launch of its 2025 Physical Security Operations Benchmark Report, an industry-first study that benchmarks both private security service providers and corporate security teams side by side. Based on a survey of over 300 security professionals across the globe, the report provides a comprehensive look at the state of physical security operations. Read Now

    • Guard Services
  • Identity Governance at the Crossroads of Complexity and Scale

    Modern enterprises are grappling with an increasing number of identities, both human and machine, across an ever-growing number of systems. They must also deal with increased operational demands, including faster onboarding, more scalable models, and tighter security enforcement. Navigating these ever-growing challenges with speed and accuracy requires a new approach to identity governance that is built for the future enterprise. Read Now

  • Eagle Eye Networks Launches AI Camera Gun Detection

    Eagle Eye Networks, a provider of cloud video surveillance, recently introduced Eagle Eye Gun Detection, a new layer of protection for schools and businesses that works with existing security cameras and infrastructure. Eagle Eye Networks is the first to build gun detection into its platform. Read Now

  • Report: AI is Supercharging Old-School Cybercriminal Tactics

    AI isn’t just transforming how we work. It’s reshaping how cybercriminals attack, with threat actors exploiting AI to mass produce malicious code loaders, steal browser credentials and accelerate cloud attacks, according to a new report from Elastic. Read Now

  • Pragmatism, Productivity, and the Push for Accountability in 2025-2026

    Every year, the security industry debates whether artificial intelligence is a disruption, an enabler, or a distraction. By 2025, that conversation matured, where AI became a working dimension in physical identity and access management (PIAM) programs. Observations from 2025 highlight this turning point in AI’s role in access control and define how security leaders are being distinguished based on how they apply it. Read Now

New Products

  • FEP GameChanger

    FEP GameChanger

    Paige Datacom Solutions Introduces Important and Innovative Cabling Products GameChanger Cable, a proven and patented solution that significantly exceeds the reach of traditional category cable will now have a FEP/FEP construction.

  • Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

    Connect ONE®

    Connect ONE’s powerful cloud-hosted management platform provides the means to tailor lockdowns and emergency mass notifications throughout a facility – while simultaneously alerting occupants to hazards or next steps, like evacuation.

  • Camden CV-7600 High Security Card Readers

    Camden CV-7600 High Security Card Readers

    Camden Door Controls has relaunched its CV-7600 card readers in response to growing market demand for a more secure alternative to standard proximity credentials that can be easily cloned. CV-7600 readers support MIFARE DESFire EV1 & EV2 encryption technology credentials, making them virtually clone-proof and highly secure.