Researchers to Demo and Deploy Disaster Communications System

In the aftermath of most disasters – from the terrorist attacks of Sept. 11, 2001, to this year’s earthquake in Japan – communication systems have been overwhelmed, leaving people without phones and Internet when they need these tools the most.

Fortunately, Georgia Tech College of Computing researchers have developed a possible solution. It’s an innovative wireless system called LifeNet designed to help first responders communicate after disasters. LifeNet is a mobile ad-hoc network designed for use in highly transient environments that requires no infrastructure such as Internet, cell towers or traditional landlines.

“It’s an independent network you can join,” said Santosh Vempala, Georgia Tech distinguished professor of computer science in the College of Computing.

“It doesn’t need wires, antennas, cell towers and so on, and it works across platforms like laptops and smart phones. We imagine relief agencies would be able to set up a network right away and communicate about what’s needed.”

Vempala and his graduate student, Hrushikesh Mehendale, will demonstrate the LifeNet system at the ACM SIGCOM conference from 3:30 p.m. to 6 p.m. today in Toronto, Canada.

The standard for post-disaster communications is the satellite phone, which, at $600 or more per unit, can be expensive to own and, at 50 cents per text, costly to use.

LifeNet, however, bridges connectivity between a satellite phone or other Internet gateway and a WiFi-based network on the ground. It extends the coverage of a satellite phone or a service such as SMS from one computer with access to the entire independent network in the field. Essentially, that means several people in the field who may not have satellite phones but have smart phones or laptops with WiFi capability can connect to the LifeNet network, communicate with each other with no other infrastructure and use the Internet as long as any one of them has access.

“Currently available options such as satellite communication are expensive and have limited functionality,” Mehendale said. “If you use LifeNet, the cost savings per text message is 100 times less than a satellite phone.”

LifeNet is also easy to set up. The network starts as soon as a node is put in place. Each LifeNet-enabled computer acts as both a host client and a router, able to directly route data to and from any other available wireless device. Nodes can be moved from location to location as needed, and the network remains intact.

The software developed by Vempala and Mehendale for LifeNet provides basic communications that are low bandwidth and reliable. It doesn’t allow users to stream video, for example, but it can send text messages for basic communication needs.

 “It’s a trade-off of performance for reliability,” Vempala said. “Reliability is really what you need the most in these situations.”

During the demo at SIGCOMM, conference attendees will be able to see the Atlanta-based LifeNet network via a web-based interface in Toronto. They will be able to log into the network, send messages, move nodes and see how communication is affected.

Georgia Tech researchers are currently ready to deploy LifeNet for field testing and are looking to expand beyond crisis communications.

Vempala’s team recently partnered with Tata Institute of Social Sciences India, which has a disaster management center. Together, the researchers identified cyclone-affected areas without communications infrastructure that could benefit most from LifeNet. As a result, researchers will be deploying LifeNet in the Mohali region of India over the next several months.

“In an area without any other connectivity, we will establish a set up that could be used daily and could also be specifically helpful during a disaster,” Mehendale said. “We need to make the solution a part of their daily lives since people cannot afford costly equipment like satellite phones in third-world regions.”

The researchers also hope to pitch LifeNet as a package to FEMA, the Red Cross and other U.S. relief agencies soon.

“There are many recent situations, like the Mississippi floods this summer, where this would have been valuable,” Vempala said. “People were trapped. Cell phones were not working, the Internet is down and people don’t have a way to communicate. . . . LifeNet can be the solution.”

Featured

Featured Cybersecurity

Webinars

New Products

  • AC Nio

    AC Nio

    Aiphone, a leading international manufacturer of intercom, access control, and emergency communication products, has introduced the AC Nio, its access control management software, an important addition to its new line of access control solutions. 3

  • PE80 Series

    PE80 Series by SARGENT / ED4000/PED5000 Series by Corbin Russwin

    ASSA ABLOY, a global leader in access solutions, has announced the launch of two next generation exit devices from long-standing leaders in the premium exit device market: the PE80 Series by SARGENT and the PED4000/PED5000 Series by Corbin Russwin. These new exit devices boast industry-first features that are specifically designed to provide enhanced safety, security and convenience, setting new standards for exit solutions. The SARGENT PE80 and Corbin Russwin PED4000/PED5000 Series exit devices are engineered to meet the ever-evolving needs of modern buildings. Featuring the high strength, security and durability that ASSA ABLOY is known for, the new exit devices deliver several innovative, industry-first features in addition to elegant design finishes for every opening. 3

  • ResponderLink

    ResponderLink

    Shooter Detection Systems (SDS), an Alarm.com company and a global leader in gunshot detection solutions, has introduced ResponderLink, a groundbreaking new 911 notification service for gunshot events. ResponderLink completes the circle from detection to 911 notification to first responder awareness, giving law enforcement enhanced situational intelligence they urgently need to save lives. Integrating SDS’s proven gunshot detection system with Noonlight’s SendPolice platform, ResponderLink is the first solution to automatically deliver real-time gunshot detection data to 911 call centers and first responders. When shots are detected, the 911 dispatching center, also known as the Public Safety Answering Point or PSAP, is contacted based on the gunfire location, enabling faster initiation of life-saving emergency protocols. 3